whisper-tiny-hi / README.md
BrilliantCoolHuge's picture
update model card README.md
7158cb4
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Chinese - Bingcheng Hu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: zh-CN
          split: test[:1%]
          args: 'config: chinese, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 226.41509433962264

Whisper Small Chinese - Bingcheng Hu

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7064
  • Wer: 226.4151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8417 1.08 20 1.4964 598.1132
1.2552 2.16 40 1.4901 367.9245
0.8195 3.24 60 1.4953 391.5094
0.6174 4.32 80 1.5091 475.4717
0.4594 5.41 100 1.5318 520.7547
0.489 6.49 120 1.5558 863.2075
0.4673 7.57 140 1.5719 663.2075
0.3976 8.65 160 1.5962 682.0755
0.3518 9.73 180 1.6160 623.5849
0.3043 10.81 200 1.6219 620.7547
0.2524 11.89 220 1.6505 598.1132
0.259 12.97 240 1.6543 329.2453
0.1696 14.05 260 1.6678 333.0189
0.1188 15.14 280 1.6746 329.2453
0.1366 16.22 300 1.6852 428.3019
0.1165 17.3 320 1.6979 262.2642
0.1062 18.38 340 1.7021 338.6792
0.0882 19.46 360 1.7047 313.2075
0.0891 20.54 380 1.7054 302.8302
0.0676 21.62 400 1.7064 226.4151

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.10.1
  • Tokenizers 0.13.2