metadata
language:
- zh
license: apache-2.0
tags:
- whisper
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Chinese - Bingcheng Hu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: zh-CN
split: test[:1%]
args: 'config: chinese, split: test'
metrics:
- name: Wer
type: wer
value: 226.41509433962264
Whisper Small Chinese - Bingcheng Hu
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.7064
- Wer: 226.4151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 400
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8417 | 1.08 | 20 | 1.4964 | 598.1132 |
1.2552 | 2.16 | 40 | 1.4901 | 367.9245 |
0.8195 | 3.24 | 60 | 1.4953 | 391.5094 |
0.6174 | 4.32 | 80 | 1.5091 | 475.4717 |
0.4594 | 5.41 | 100 | 1.5318 | 520.7547 |
0.489 | 6.49 | 120 | 1.5558 | 863.2075 |
0.4673 | 7.57 | 140 | 1.5719 | 663.2075 |
0.3976 | 8.65 | 160 | 1.5962 | 682.0755 |
0.3518 | 9.73 | 180 | 1.6160 | 623.5849 |
0.3043 | 10.81 | 200 | 1.6219 | 620.7547 |
0.2524 | 11.89 | 220 | 1.6505 | 598.1132 |
0.259 | 12.97 | 240 | 1.6543 | 329.2453 |
0.1696 | 14.05 | 260 | 1.6678 | 333.0189 |
0.1188 | 15.14 | 280 | 1.6746 | 329.2453 |
0.1366 | 16.22 | 300 | 1.6852 | 428.3019 |
0.1165 | 17.3 | 320 | 1.6979 | 262.2642 |
0.1062 | 18.38 | 340 | 1.7021 | 338.6792 |
0.0882 | 19.46 | 360 | 1.7047 | 313.2075 |
0.0891 | 20.54 | 380 | 1.7054 | 302.8302 |
0.0676 | 21.62 | 400 | 1.7064 | 226.4151 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.10.1
- Tokenizers 0.13.2