whisper-small-sn / README.md
BrianMupini's picture
End of training
e7be78e
metadata
language:
  - sn
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Sn - Brian Mupini
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: google/fleurs
          config: sn_zw
          split: test
          args: sn_zw
        metrics:
          - name: Wer
            type: wer
            value: 37.525

Whisper Small Sn - Brian Mupini

This model is a fine-tuned version of openai/whisper-small on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5644
  • Wer Ortho: 37.8217
  • Wer: 37.525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1265 2.81 500 0.5644 37.8217 37.525

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0