|
--- |
|
license: mit |
|
datasets: |
|
- KomeijiForce/Inbedder-Pretrain-Data |
|
language: |
|
- en |
|
--- |
|
|
|
# [ACL2024] Answer is All You Need: Instruction-following Text Embedding via Answering the Question |
|
|
|
InBedder🛌 is a text embedder that is designed to follow instructions. Instruction-following text embedder can capture characteristics of texts specified by user instructions. InBedder offers a novel viewpoint that treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. We show that InBedder is aware of instructions with different evaluation tasks. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64323dd503d81fa4d26deaf9/jLbqF-2uT8Aw9DsN7XCVG.png) |
|
|
|
The following is a use case from [https://github.com/zhang-yu-wei/InBedder/blob/main/UseCase.ipynb](https://github.com/zhang-yu-wei/InBedder/blob/main/UseCase.ipynb) |
|
|
|
```python |
|
import torch |
|
from torch import nn |
|
from torch.nn.functional import gelu, cosine_similarity |
|
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM |
|
|
|
import numpy as np |
|
|
|
class InBedder(): |
|
|
|
def __init__(self, path='KomeijiForce/inbedder-roberta-large', device='cuda:0'): |
|
|
|
model = AutoModelForMaskedLM.from_pretrained(path) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = model.roberta |
|
self.dense = model.lm_head.dense |
|
self.layer_norm = model.lm_head.layer_norm |
|
|
|
self.device = torch.device(device) |
|
self.model = self.model.to(self.device) |
|
self.dense = self.dense.to(self.device) |
|
self.layer_norm = self.layer_norm.to(self.device) |
|
|
|
self.vocab = self.tokenizer.get_vocab() |
|
self.vocab = {self.vocab[key]:key for key in self.vocab} |
|
|
|
def encode(self, input_texts, instruction, n_mask): |
|
|
|
if type(instruction) == str: |
|
prompts = [instruction + self.tokenizer.mask_token*n_mask for input_text in input_texts] |
|
elif type(instruction) == list: |
|
prompts = [inst + self.tokenizer.mask_token*n_mask for inst in instruction] |
|
|
|
inputs = self.tokenizer(input_texts, prompts, padding=True, truncation=True, return_tensors='pt').to(self.device) |
|
|
|
mask = inputs.input_ids.eq(self.tokenizer.mask_token_id) |
|
|
|
outputs = self.model(**inputs) |
|
|
|
logits = outputs.last_hidden_state[mask] |
|
|
|
logits = self.layer_norm(gelu(self.dense(logits))) |
|
|
|
logits = logits.reshape(len(input_texts), n_mask, -1) |
|
|
|
logits = logits.mean(1) |
|
|
|
logits = (logits - logits.mean(1, keepdim=True)) / logits.std(1, keepdim=True) |
|
|
|
return logits |
|
|
|
inbedder = InBedder(path='KomeijiForce/inbedder-roberta-large', device='cpu') |
|
|
|
texts = ["I love cat!", "I love dog!", "I dislike cat!"] |
|
instruction = "What is the animal mentioned here?" |
|
embeddings = inbedder.encode(texts, instruction, 3) |
|
|
|
cosine_similarity(embeddings[:1], embeddings[1:], dim=1) |
|
# tensor([0.9374, 0.9917], grad_fn=<SumBackward1>) |
|
|
|
texts = ["I love cat!", "I love dog!", "I dislike cat!"] |
|
instruction = "What is emotion expressed here?" |
|
embeddings = inbedder.encode(texts, instruction, 3) |
|
|
|
cosine_similarity(embeddings[:1], embeddings[1:], dim=1) |
|
# tensor([0.9859, 0.8537], grad_fn=<SumBackward1>) |
|
``` |