NER-finetuned-BETO / README.md
Bluruwu's picture
End of training
b1b49b1 verified
metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: NER-finetuned-BETO
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9697960575254153
          - name: F1
            type: f1
            value: 0.9693514387921158
          - name: Precision
            type: precision
            value: 0.9691715895096829
          - name: Recall
            type: recall
            value: 0.9697960575254153

NER-finetuned-BETO

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1898
  • Accuracy: 0.9698
  • F1: 0.9694
  • Precision: 0.9692
  • Recall: 0.9698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0509 1.0 521 0.1309 0.9700 0.9696 0.9698 0.9700
0.0292 2.0 1042 0.1618 0.9679 0.9673 0.9670 0.9679
0.0178 3.0 1563 0.1460 0.9718 0.9712 0.9709 0.9718
0.0141 4.0 2084 0.1775 0.9689 0.9682 0.9680 0.9689
0.0091 5.0 2605 0.1815 0.9700 0.9695 0.9693 0.9700
0.007 6.0 3126 0.1898 0.9698 0.9694 0.9692 0.9698

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1