metadata
language:
- mn
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: mongolian-Davlan-distilbert-base-multilingual-cased-ner-hrl
results: []
mongolian-Davlan-distilbert-base-multilingual-cased-ner-hrl
This model is a fine-tuned version of Davlan/distilbert-base-multilingual-cased-ner-hrl on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1589
- Precision: 0.8750
- Recall: 0.8977
- F1: 0.8862
- Accuracy: 0.9714
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1974 | 1.0 | 477 | 0.1235 | 0.8022 | 0.8510 | 0.8259 | 0.9600 |
0.0953 | 2.0 | 954 | 0.1128 | 0.8315 | 0.8697 | 0.8502 | 0.9641 |
0.0621 | 3.0 | 1431 | 0.1149 | 0.8537 | 0.8832 | 0.8682 | 0.9675 |
0.0414 | 4.0 | 1908 | 0.1245 | 0.8534 | 0.8842 | 0.8686 | 0.9676 |
0.0289 | 5.0 | 2385 | 0.1400 | 0.8630 | 0.8895 | 0.8760 | 0.9692 |
0.0214 | 6.0 | 2862 | 0.1448 | 0.8612 | 0.8908 | 0.8758 | 0.9693 |
0.0156 | 7.0 | 3339 | 0.1534 | 0.8664 | 0.8924 | 0.8792 | 0.9699 |
0.0114 | 8.0 | 3816 | 0.1568 | 0.8755 | 0.8957 | 0.8855 | 0.9711 |
0.009 | 9.0 | 4293 | 0.1580 | 0.8710 | 0.8953 | 0.8830 | 0.9713 |
0.0076 | 10.0 | 4770 | 0.1589 | 0.8750 | 0.8977 | 0.8862 | 0.9714 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3