Binarybardakshat commited on
Commit
d9dea86
·
verified ·
1 Parent(s): 747888d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - abdulmananraja/real-life-violence-situations
5
+ tags:
6
+ - image-classification
7
+ - vision
8
+ - harassment-detection
9
+ license: apache-2.0
10
+ ---
11
+
12
+ # RKSHT Harassment Detection Model
13
+
14
+ ## Model Description
15
+
16
+ This is a custom Vision Transformer (ViT) model fine-tuned for detecting instances of harassment in public and workplace environments. The model is built on [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) and trained on a dataset tailored for harassment detection, classifying images into 'harassment' or 'non-harassment' categories.
17
+
18
+ ## Intended Use
19
+
20
+ This model is designed for use in applications requiring harassment detection through visual data, including:
21
+
22
+ - Workplace and public safety monitoring
23
+ - Real-time CCTV surveillance
24
+ - Automated alert systems
25
+
26
+ ## Model accuracy
27
+
28
+ The RKSHT model has been fine-tuned with high accuracy for distinguishing harassment behavior.
29
+
30
+ ## How to Use
31
+
32
+ Here’s an example of how to use the RKSHT Harassment Detection model for image classification:
33
+
34
+ ```python
35
+ import torch
36
+ from transformers import ViTForImageClassification, ViTFeatureExtractor
37
+ from PIL import Image
38
+
39
+ # Load the model and feature extractor
40
+ model = ViTForImageClassification.from_pretrained('Binarybardakshat/RKSHT')
41
+ feature_extractor = ViTFeatureExtractor.from_pretrained('Binarybardakshat/RKSHT')
42
+
43
+ # Load an image
44
+ image = Image.open('image.jpg')
45
+
46
+ # Preprocess the image
47
+ inputs = feature_extractor(images=image, return_tensors="pt")
48
+
49
+ # Perform inference
50
+ with torch.no_grad():
51
+ outputs = model(**inputs)
52
+ logits = outputs.logits
53
+ predicted_class_idx = logits.argmax(-1).item()
54
+
55
+ # Print the predicted class
56
+ print("Predicted class:", model.config.id2label[predicted_class_idx])