Bin12345 osanseviero commited on
Commit
c77a4ab
1 Parent(s): 66018ad

Add link to paper (#2)

Browse files

- Add link to paper (3038c0b05c28649527be9c05d9a6b509cbc25de5)


Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +42 -40
README.md CHANGED
@@ -1,40 +1,42 @@
1
- ---
2
- license: apache-2.0
3
- ---
4
-
5
- We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
6
-
7
- Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
8
-
9
- This is the 6.7B version of AutoCoder.
10
-
11
- See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
12
-
13
- Simple test script:
14
-
15
- ```
16
- model_path = ""
17
- tokenizer = AutoTokenizer.from_pretrained(model_path)
18
- model = AutoModelForCausalLM.from_pretrained(model_path,
19
- device_map="auto")
20
-
21
- HumanEval = load_dataset("evalplus/humanevalplus")
22
-
23
- Input = "" # input your question here
24
-
25
- messages=[
26
- { 'role': 'user', 'content': Input}
27
- ]
28
- inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
29
- return_tensors="pt").to(model.device)
30
-
31
- outputs = model.generate(inputs,
32
- max_new_tokens=1024,
33
- do_sample=False,
34
- temperature=0.0,
35
- top_p=1.0,
36
- num_return_sequences=1,
37
- eos_token_id=tokenizer.eos_token_id)
38
-
39
- answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
40
- ```
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
6
+
7
+ Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
8
+
9
+ This is the 6.7B version of AutoCoder.
10
+
11
+ See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
12
+
13
+ Simple test script:
14
+
15
+ ```
16
+ model_path = ""
17
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
18
+ model = AutoModelForCausalLM.from_pretrained(model_path,
19
+ device_map="auto")
20
+
21
+ HumanEval = load_dataset("evalplus/humanevalplus")
22
+
23
+ Input = "" # input your question here
24
+
25
+ messages=[
26
+ { 'role': 'user', 'content': Input}
27
+ ]
28
+ inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
29
+ return_tensors="pt").to(model.device)
30
+
31
+ outputs = model.generate(inputs,
32
+ max_new_tokens=1024,
33
+ do_sample=False,
34
+ temperature=0.0,
35
+ top_p=1.0,
36
+ num_return_sequences=1,
37
+ eos_token_id=tokenizer.eos_token_id)
38
+
39
+ answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
40
+ ```
41
+
42
+ Paper: https://arxiv.org/abs/2405.14906