Bikas0 commited on
Commit
964f22a
·
verified ·
1 Parent(s): 65d5184

Update README.md

Browse files

from transformers import AutoTokenizer, AutoConfig, AddedToken, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from dataclasses import dataclass
from typing import Dict
import torch
import copy

## 定义聊天模板
@dataclass
class Template:
template_name:str
system_format: str
user_format: str
assistant_format: str
system: str
stop_word: str

template_dict: Dict[str, Template] = dict()

def register_template(template_name, system_format, user_format, assistant_format, system, stop_word=None):
template_dict[template_name] = Template(
template_name=template_name,
system_format=system_format,
user_format=user_format,
assistant_format=assistant_format,
system=system,
stop_word=stop_word,
)

# 这里的系统提示词是训练时使用的,推理时可以自行尝试修改效果
register_template(
template_name='llama3',
system_format='<|begin_of_text|><<SYS>>\n{content}\n<</SYS>>\n\n',
user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|>',
assistant_format='<|start_header_id|>assistant<|end_header_id|>\n\n{content}<|end_of_text|>\n',
system="You are a helpful, excellent and smart assistant. "
"Please respond to the user using the language they input, ensuring the language is elegant and fluent."
"If you don't know the answer to a question, please don't share false information.",
stop_word='<|end_of_text|>'
)


## 加载模型
def load_model(model_name_or_path, load_in_4bit=False, adapter_name_or_path=None):
if load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None

# 加载base model
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map='auto',
quantization_config=quantization_config
)

# 加载adapter
if adapter_name_or_path is not None:
model = PeftModel.from_pretrained(model, adapter_name_or_path)

return model

## 加载tokenzier
def load_tokenizer(model_name_or_path):
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True,
use_fast=False
)

if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token

return tokenizer

## 构建prompt
def build_prompt(tokenizer, template, query, history, system=None):
template_name = template.template_name
system_format = template.system_format
user_format = template.user_format
assistant_format = template.assistant_format
system = system if system is not None else template.system

history.append({"role": 'user', 'message': query})
input_ids = []

# 添加系统信息
if system_format is not None:
if system is not None:
system_text = system_format.format(content=system)
input_ids = tokenizer.encode(system_text, add_special_tokens=False)
# 拼接历史对话
for item in history:
role, message = item['role'], item['message']
if role == 'user':
message = user_format.format(content=message, stop_token=tokenizer.eos_token)
else:
message = assistant_format.format(content=message, stop_token=tokenizer.eos_token)
tokens = tokenizer.encode(message, add_special_tokens=False)
input_ids += tokens
input_ids = torch.tensor([input_ids], dtype=torch.long)

return input_ids


def main():
model_name_or_path = 'Bikas0/Bengali-Question-Answer-Llama3'
template_name = 'llama3'
adapter_name_or_path = None

template = template_dict[template_name]
load_in_4bit = False


max_new_tokens = 500 # 每次回复时,AI生成文本的最大长度
top_p = 0.9
temperature = 0.6
repetition_penalty = 1.1


print(f'Loading model from: {model_name_or_path}')
print(f'adapter_name_or_path: {adapter_name_or_path}')
model = load_model(
model_name_or_path,
load_in_4bit=load_in_4bit,
adapter_name_or_path=adapter_name_or_path
).eval()
tokenizer = load_tokenizer(model_name_or_path if adapter_name_or_path is None else adapter_name_or_path)
if template.stop_word is None:
template.stop_word = tokenizer.eos_token
stop_token_id = tokenizer.encode(template.stop_word, add_special_tokens=True)
assert len(stop_token_id) == 1
stop_token_id = stop_token_id[0]

history = []

query = input('# User:')
while True:
query = query.strip()
input_ids = build_prompt(tokenizer, template, query, copy.deepcopy(history), system=None).to(model.device)
outputs = model.generate(
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True,
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty,
eos_token_id=stop_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(template.stop_word, "").strip()

# 存储对话历史
history.append({"role": 'user', 'message': query})
history.append({"role": 'assistant', 'message': response})

# 当对话长度超过6轮时,清空最早的对话,可自行修改
if len(history) > 12:
history = history[:-12]

print("# Llama3-Chinese:{}".format(response))
query = input('# User:')


if __name__ == '__main__':
main()

Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -3,7 +3,7 @@ title: Answering Bengali Questions using Transformers
3
  license: mit
4
  language:
5
  - bn
6
- pipeline_tag: text-generation
7
  library_name: adapter-transformers
8
  base_model: Bikas0/Bengali-Question-Answer-Llama3
9
  tags:
 
3
  license: mit
4
  language:
5
  - bn
6
+ pipeline_tag: question-answering
7
  library_name: adapter-transformers
8
  base_model: Bikas0/Bengali-Question-Answer-Llama3
9
  tags: