HuggingSara commited on
Commit
83344fe
1 Parent(s): 039b433

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -18
README.md CHANGED
@@ -4,29 +4,22 @@ language:
4
  - ar
5
  metrics:
6
  - accuracy
7
- ---
8
-
9
- ---
10
- language:
11
- - en
12
- - ar
13
- metrics:
14
- - accuracy
15
  pipeline_tag: text-generation
16
  tags:
17
  - medical
18
- license: cc-by-nc-sa-4.0
19
  ---
20
 
21
- ## Model Card for BiMediX
 
 
22
 
23
  ### Model Details
24
  - **Name:** BiMediX
25
  - **Version:** 1.0
26
  - **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
27
- - **Languages:** English, Arabic
28
  - **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
29
- - **Training Data:** BiMed1.3M, a bilingual dataset with diverse medical interactions.
30
 
31
  ### Intended Use
32
  - **Primary Use:** Medical interactions in both English and Arabic.
@@ -42,7 +35,7 @@ model_id = "BiMediX/BiMediX-Ara"
42
  tokenizer = AutoTokenizer.from_pretrained(model_id)
43
  model = AutoModelForCausalLM.from_pretrained(model_id)
44
 
45
- text = "Hello BiMediX! I've been experiencing increased tiredness in the past week."
46
  inputs = tokenizer(text, return_tensors="pt")
47
 
48
  outputs = model.generate(**inputs, max_new_tokens=500)
@@ -50,12 +43,11 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
50
  ```
51
 
52
  ### Training Procedure
53
- - **Dataset:** Semi-automated English-to-Arabic translation with human refinement.
54
- - **Training Resources:** 632 million healthcare specialized tokens.
55
- - **Evaluation:**
56
 
57
  ### Model Performance
58
- - **Benchmarks:** Outperforms the baseline model and Jais-30B in medical evaluations.
59
 
60
  | **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
61
  |-----------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
@@ -75,4 +67,4 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
 
76
  ### Authors
77
  Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
78
- **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**
 
4
  - ar
5
  metrics:
6
  - accuracy
 
 
 
 
 
 
 
 
7
  pipeline_tag: text-generation
8
  tags:
9
  - medical
 
10
  ---
11
 
12
+
13
+
14
+ ## Model Card for BiMediX-Bilingual
15
 
16
  ### Model Details
17
  - **Name:** BiMediX
18
  - **Version:** 1.0
19
  - **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
20
+ - **Languages:** Arabic
21
  - **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
22
+ - **Training Data:** BiMed1.3M-Arabic, an arabic dataset with diverse medical interactions.
23
 
24
  ### Intended Use
25
  - **Primary Use:** Medical interactions in both English and Arabic.
 
35
  tokenizer = AutoTokenizer.from_pretrained(model_id)
36
  model = AutoModelForCausalLM.from_pretrained(model_id)
37
 
38
+ text = "مرحبًا بيميديكس! لقد كنت أعاني من التعب المتزايد في الأسبوع الماضي."
39
  inputs = tokenizer(text, return_tensors="pt")
40
 
41
  outputs = model.generate(**inputs, max_new_tokens=500)
 
43
  ```
44
 
45
  ### Training Procedure
46
+ - **Dataset:** BiMed1.3M-Arabic.
47
+ - **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters.
48
+ - **Training Resources:** The model underwent training on the Arabic corpus.
49
 
50
  ### Model Performance
 
51
 
52
  | **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
53
  |-----------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
 
67
 
68
  ### Authors
69
  Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
70
+ **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**