cmrit
/
cmrithackathon-master
/.venv
/lib
/python3.11
/site-packages
/pandas
/_libs
/window
/aggregations.pyi
from typing import ( | |
Any, | |
Callable, | |
Literal, | |
) | |
import numpy as np | |
from pandas._typing import ( | |
WindowingRankType, | |
npt, | |
) | |
def roll_sum( | |
values: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_mean( | |
values: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_var( | |
values: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
ddof: int = ..., | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_skew( | |
values: np.ndarray, # np.ndarray[np.float64] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_kurt( | |
values: np.ndarray, # np.ndarray[np.float64] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_median_c( | |
values: np.ndarray, # np.ndarray[np.float64] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_max( | |
values: np.ndarray, # np.ndarray[np.float64] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_min( | |
values: np.ndarray, # np.ndarray[np.float64] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_quantile( | |
values: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
quantile: float, # float64_t | |
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_rank( | |
values: np.ndarray, | |
start: np.ndarray, | |
end: np.ndarray, | |
minp: int, | |
percentile: bool, | |
method: WindowingRankType, | |
ascending: bool, | |
) -> np.ndarray: ... # np.ndarray[float] | |
def roll_apply( | |
obj: object, | |
start: np.ndarray, # np.ndarray[np.int64] | |
end: np.ndarray, # np.ndarray[np.int64] | |
minp: int, # int64_t | |
function: Callable[..., Any], | |
raw: bool, | |
args: tuple[Any, ...], | |
kwargs: dict[str, Any], | |
) -> npt.NDArray[np.float64]: ... | |
def roll_weighted_sum( | |
values: np.ndarray, # const float64_t[:] | |
weights: np.ndarray, # const float64_t[:] | |
minp: int, | |
) -> np.ndarray: ... # np.ndarray[np.float64] | |
def roll_weighted_mean( | |
values: np.ndarray, # const float64_t[:] | |
weights: np.ndarray, # const float64_t[:] | |
minp: int, | |
) -> np.ndarray: ... # np.ndarray[np.float64] | |
def roll_weighted_var( | |
values: np.ndarray, # const float64_t[:] | |
weights: np.ndarray, # const float64_t[:] | |
minp: int, # int64_t | |
ddof: int, # unsigned int | |
) -> np.ndarray: ... # np.ndarray[np.float64] | |
def ewm( | |
vals: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # const int64_t[:] | |
end: np.ndarray, # const int64_t[:] | |
minp: int, | |
com: float, # float64_t | |
adjust: bool, | |
ignore_na: bool, | |
deltas: np.ndarray | None = None, # const float64_t[:] | |
normalize: bool = True, | |
) -> np.ndarray: ... # np.ndarray[np.float64] | |
def ewmcov( | |
input_x: np.ndarray, # const float64_t[:] | |
start: np.ndarray, # const int64_t[:] | |
end: np.ndarray, # const int64_t[:] | |
minp: int, | |
input_y: np.ndarray, # const float64_t[:] | |
com: float, # float64_t | |
adjust: bool, | |
ignore_na: bool, | |
bias: bool, | |
) -> np.ndarray: ... # np.ndarray[np.float64] | |