|
from typing import Literal |
|
|
|
import numpy as np |
|
|
|
from pandas._typing import npt |
|
|
|
def group_median_float64( |
|
out: np.ndarray, |
|
counts: npt.NDArray[np.int64], |
|
values: np.ndarray, |
|
labels: npt.NDArray[np.int64], |
|
min_count: int = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_cumprod( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
is_datetimelike: bool, |
|
skipna: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_cumsum( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
is_datetimelike: bool, |
|
skipna: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_shift_indexer( |
|
out: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
periods: int, |
|
) -> None: ... |
|
def group_fillna_indexer( |
|
out: np.ndarray, |
|
labels: np.ndarray, |
|
sorted_labels: npt.NDArray[np.intp], |
|
mask: npt.NDArray[np.uint8], |
|
limit: int, |
|
dropna: bool, |
|
) -> None: ... |
|
def group_any_all( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: np.ndarray, |
|
val_test: Literal["any", "all"], |
|
skipna: bool, |
|
result_mask: np.ndarray | None, |
|
) -> None: ... |
|
def group_sum( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: np.ndarray | None, |
|
result_mask: np.ndarray | None = ..., |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
) -> None: ... |
|
def group_prod( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: np.ndarray | None, |
|
result_mask: np.ndarray | None = ..., |
|
min_count: int = ..., |
|
) -> None: ... |
|
def group_var( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
min_count: int = ..., |
|
ddof: int = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
is_datetimelike: bool = ..., |
|
name: str = ..., |
|
) -> None: ... |
|
def group_skew( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
skipna: bool = ..., |
|
) -> None: ... |
|
def group_mean( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_ohlc( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
min_count: int = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_quantile( |
|
out: npt.NDArray[np.float64], |
|
values: np.ndarray, |
|
labels: npt.NDArray[np.intp], |
|
mask: npt.NDArray[np.uint8], |
|
qs: npt.NDArray[np.float64], |
|
starts: npt.NDArray[np.int64], |
|
ends: npt.NDArray[np.int64], |
|
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], |
|
result_mask: np.ndarray | None, |
|
is_datetimelike: bool, |
|
) -> None: ... |
|
def group_last( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: npt.NDArray[np.bool_] | None, |
|
result_mask: npt.NDArray[np.bool_] | None = ..., |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
skipna: bool = ..., |
|
) -> None: ... |
|
def group_nth( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
mask: npt.NDArray[np.bool_] | None, |
|
result_mask: npt.NDArray[np.bool_] | None = ..., |
|
min_count: int = ..., |
|
rank: int = ..., |
|
is_datetimelike: bool = ..., |
|
skipna: bool = ..., |
|
) -> None: ... |
|
def group_rank( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
is_datetimelike: bool, |
|
ties_method: Literal["average", "min", "max", "first", "dense"] = ..., |
|
ascending: bool = ..., |
|
pct: bool = ..., |
|
na_option: Literal["keep", "top", "bottom"] = ..., |
|
mask: npt.NDArray[np.bool_] | None = ..., |
|
) -> None: ... |
|
def group_max( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_min( |
|
out: np.ndarray, |
|
counts: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_idxmin_idxmax( |
|
out: npt.NDArray[np.intp], |
|
counts: npt.NDArray[np.int64], |
|
values: np.ndarray, |
|
labels: npt.NDArray[np.intp], |
|
min_count: int = ..., |
|
is_datetimelike: bool = ..., |
|
mask: np.ndarray | None = ..., |
|
name: str = ..., |
|
skipna: bool = ..., |
|
result_mask: np.ndarray | None = ..., |
|
) -> None: ... |
|
def group_cummin( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
is_datetimelike: bool, |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
skipna: bool = ..., |
|
) -> None: ... |
|
def group_cummax( |
|
out: np.ndarray, |
|
values: np.ndarray, |
|
labels: np.ndarray, |
|
ngroups: int, |
|
is_datetimelike: bool, |
|
mask: np.ndarray | None = ..., |
|
result_mask: np.ndarray | None = ..., |
|
skipna: bool = ..., |
|
) -> None: ... |
|
|