layoutlm-funsd1 / README.md
Benedict-L's picture
End of training
bea9526 verified
|
raw
history blame
7.1 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd1
    results: []

layoutlm-funsd1

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6667
  • Answer: {'precision': 0.6578947368421053, 'recall': 0.7725587144622992, 'f1': 0.7106310403638432, 'number': 809}
  • Header: {'precision': 0.19658119658119658, 'recall': 0.19327731092436976, 'f1': 0.19491525423728814, 'number': 119}
  • Question: {'precision': 0.7215958369470945, 'recall': 0.7812206572769953, 'f1': 0.7502254283137962, 'number': 1065}
  • Overall Precision: 0.6667
  • Overall Recall: 0.7426
  • Overall F1: 0.7026
  • Overall Accuracy: 0.7964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7693 1.0 10 1.5725 {'precision': 0.03488372093023256, 'recall': 0.0407911001236094, 'f1': 0.037606837606837605, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20363636363636364, 'recall': 0.21032863849765257, 'f1': 0.20692840646651267, 'number': 1065} 0.1256 0.1290 0.1273 0.3991
1.425 2.0 20 1.2448 {'precision': 0.12746386333771353, 'recall': 0.11990111248454882, 'f1': 0.1235668789808917, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.44836716681376876, 'recall': 0.47699530516431926, 'f1': 0.46223839854413107, 'number': 1065} 0.3194 0.3036 0.3113 0.5601
1.1125 3.0 30 0.9760 {'precision': 0.43318485523385303, 'recall': 0.48084054388133496, 'f1': 0.45577035735207966, 'number': 809} {'precision': 0.06060606060606061, 'recall': 0.01680672268907563, 'f1': 0.02631578947368421, 'number': 119} {'precision': 0.6073674752920036, 'recall': 0.6347417840375587, 'f1': 0.620752984389348, 'number': 1065} 0.5220 0.5354 0.5286 0.6992
0.8731 4.0 40 0.7844 {'precision': 0.5927835051546392, 'recall': 0.7107540173053152, 'f1': 0.6464305789769533, 'number': 809} {'precision': 0.12280701754385964, 'recall': 0.058823529411764705, 'f1': 0.07954545454545454, 'number': 119} {'precision': 0.6381909547738693, 'recall': 0.7154929577464789, 'f1': 0.6746347941567065, 'number': 1065} 0.6051 0.6744 0.6379 0.7573
0.6964 5.0 50 0.7420 {'precision': 0.6131868131868132, 'recall': 0.6897404202719407, 'f1': 0.6492146596858639, 'number': 809} {'precision': 0.17857142857142858, 'recall': 0.12605042016806722, 'f1': 0.14778325123152708, 'number': 119} {'precision': 0.6419951729686243, 'recall': 0.7492957746478873, 'f1': 0.6915077989601386, 'number': 1065} 0.6129 0.6879 0.6482 0.7719
0.6156 6.0 60 0.7064 {'precision': 0.6271008403361344, 'recall': 0.7379480840543882, 'f1': 0.678023850085179, 'number': 809} {'precision': 0.24, 'recall': 0.15126050420168066, 'f1': 0.18556701030927833, 'number': 119} {'precision': 0.6932409012131716, 'recall': 0.7511737089201878, 'f1': 0.7210455159981973, 'number': 1065} 0.6488 0.7100 0.6780 0.7780
0.5557 7.0 70 0.6802 {'precision': 0.6476793248945147, 'recall': 0.7589616810877626, 'f1': 0.6989186112692088, 'number': 809} {'precision': 0.22105263157894736, 'recall': 0.17647058823529413, 'f1': 0.19626168224299065, 'number': 119} {'precision': 0.7050298380221653, 'recall': 0.7765258215962442, 'f1': 0.7390527256479, 'number': 1065} 0.6597 0.7336 0.6947 0.7915
0.5151 8.0 80 0.6709 {'precision': 0.6634920634920635, 'recall': 0.7750309023485785, 'f1': 0.7149372862029646, 'number': 809} {'precision': 0.2072072072072072, 'recall': 0.19327731092436976, 'f1': 0.2, 'number': 119} {'precision': 0.7220756376429199, 'recall': 0.7708920187793428, 'f1': 0.7456857402361489, 'number': 1065} 0.6708 0.7381 0.7028 0.7936
0.4746 9.0 90 0.6726 {'precision': 0.6552462526766595, 'recall': 0.7564894932014833, 'f1': 0.7022375215146299, 'number': 809} {'precision': 0.21621621621621623, 'recall': 0.20168067226890757, 'f1': 0.20869565217391306, 'number': 119} {'precision': 0.7148900169204738, 'recall': 0.7934272300469484, 'f1': 0.7521139296840232, 'number': 1065} 0.6650 0.7431 0.7019 0.7949
0.4849 10.0 100 0.6667 {'precision': 0.6578947368421053, 'recall': 0.7725587144622992, 'f1': 0.7106310403638432, 'number': 809} {'precision': 0.19658119658119658, 'recall': 0.19327731092436976, 'f1': 0.19491525423728814, 'number': 119} {'precision': 0.7215958369470945, 'recall': 0.7812206572769953, 'f1': 0.7502254283137962, 'number': 1065} 0.6667 0.7426 0.7026 0.7964

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1