results_t5base / README.md
BeenaSamuel's picture
Update README.md
ff53d39 verified
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results_t5base
results: []
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results_t5base
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3660
- Rouge1: 0.904
- Rouge2: 0.8349
- Rougel: 0.8863
- Gen Len: 237.7528
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:--------:|
| 0.6675 | 0.8969 | 200 | 0.5012 | 0.8797 | 0.7929 | 0.8578 | 236.6854 |
| 0.5426 | 1.7937 | 400 | 0.4133 | 0.8937 | 0.8192 | 0.8751 | 237.7101 |
| 0.2768 | 2.6906 | 600 | 0.3971 | 0.8984 | 0.8262 | 0.8797 | 237.7551 |
| 0.4136 | 3.5874 | 800 | 0.3864 | 0.9001 | 0.8295 | 0.8824 | 237.7483 |
| 0.3067 | 4.4843 | 1000 | 0.3815 | 0.9011 | 0.8307 | 0.8833 | 237.7506 |
| 0.4425 | 5.3812 | 1200 | 0.3735 | 0.9015 | 0.8319 | 0.884 | 237.7528 |
| 0.4285 | 6.2780 | 1400 | 0.3720 | 0.9026 | 0.8334 | 0.885 | 237.7528 |
| 0.3025 | 7.1749 | 1600 | 0.3687 | 0.9039 | 0.8345 | 0.8859 | 237.7528 |
| 0.2699 | 8.0717 | 1800 | 0.3681 | 0.9034 | 0.8341 | 0.8857 | 237.7528 |
| 0.4072 | 8.9686 | 2000 | 0.3657 | 0.9039 | 0.8349 | 0.8862 | 237.7528 |
| 0.4555 | 9.8655 | 2200 | 0.3660 | 0.904 | 0.8349 | 0.8863 | 237.7528 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1