metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_polarity
metrics:
- accuracy
- f1
model-index:
- name: SentimentClassifier
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_polarity
type: amazon_polarity
args: amazon_polarity
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.9258649093904449
SentimentClassifier
This model is a fine-tuned version of distilbert-base-uncased on the amazon_polarity dataset. It achieves the following results on the evaluation set:
- Loss: 0.3945
- Accuracy: 0.925
- F1: 0.9259
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1