BadreddineHug's picture
End of training
409f1c8
|
raw
history blame
3.28 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LayoutLMv3_5_entities_4
    results: []

LayoutLMv3_5_entities_4

This model is a fine-tuned version of microsoft/layoutlmv3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2514
  • Precision: 0.8762
  • Recall: 0.8519
  • F1: 0.8638
  • Accuracy: 0.9739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.56 100 0.2241 0.8571 0.8333 0.8451 0.9691
No log 5.13 200 0.2210 0.8952 0.8704 0.8826 0.9758
No log 7.69 300 0.2300 0.9029 0.8611 0.8815 0.9758
No log 10.26 400 0.2630 0.8922 0.8426 0.8667 0.9720
0.0021 12.82 500 0.2692 0.8980 0.8148 0.8544 0.9710
0.0021 15.38 600 0.2414 0.9 0.8333 0.8654 0.9729
0.0021 17.95 700 0.2617 0.875 0.8426 0.8585 0.9729
0.0021 20.51 800 0.2558 0.8713 0.8148 0.8421 0.9720
0.0021 23.08 900 0.2581 0.8725 0.8241 0.8476 0.9729
0.0006 25.64 1000 0.2574 0.8679 0.8519 0.8598 0.9739
0.0006 28.21 1100 0.2806 0.88 0.8148 0.8462 0.9710
0.0006 30.77 1200 0.3032 0.8958 0.7963 0.8431 0.9691
0.0006 33.33 1300 0.2627 0.8889 0.8148 0.8502 0.9729
0.0006 35.9 1400 0.2661 0.8980 0.8148 0.8544 0.9720
0.0006 38.46 1500 0.2650 0.9 0.8333 0.8654 0.9739
0.0006 41.03 1600 0.2543 0.8835 0.8426 0.8626 0.9729
0.0006 43.59 1700 0.2593 0.8911 0.8333 0.8612 0.9739
0.0006 46.15 1800 0.2494 0.8857 0.8611 0.8732 0.9749
0.0006 48.72 1900 0.2494 0.8857 0.8611 0.8732 0.9749
0.0002 51.28 2000 0.2514 0.8762 0.8519 0.8638 0.9739

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3