Original model github address:DenoisingDiffusionProbabilityModel-ddpm-
This is a simple attempt. I trained with CIFAR-10 dataset.
Usage
# 生成图像有误...以下代码需修改!!!
import torch
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from PIL import Image
import os
import matplotlib.pyplot as plt
# 设备选择
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "BackTo2014/DDPM-test"
def load_and_eval(checkpoint_path, output_dir="./generated_images"):
# 加载 UNet 模型
unet = UNet2DModel.from_pretrained(
model_id, # 替换为你的模型存储库名称
filename=checkpoint_path, # 使用传入的检查点文件名
ignore_mismatched_sizes=True,
low_cpu_mem_usage=False,
).to(device)
# 确保 sample_size 是一个有效的尺寸信息
if unet.config.sample_size is None:
# 假设样本尺寸为 32x32 或者根据你的需求设置
unet.config.sample_size = (32, 32)
# 初始化调度器
scheduler = DDPMScheduler.from_config(model_id) # 替换为你的调度器存储库名称
# 创建管道
pipeline = DDPMPipeline(unet=unet, scheduler=scheduler)
# 设置生成参数
num_images = 4 # 生成4张图像
generator = torch.manual_seed(0) # 固定随机种子
num_inference_steps = 999 # 推理步数
# 生成图像
images = []
for _ in range(num_images):
image = pipeline(generator=generator, num_inference_steps=num_inference_steps).images[0]
images.append(image)
# 创建输出目录
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 保存图像
for i, img in enumerate(images):
img.save(os.path.join(output_dir, f"generated_image_{i}.png"))
# 使用 Matplotlib 显示图像
fig, axs = plt.subplots(1, len(images), figsize=(len(images) * 5, 5))
for ax, img in zip(axs.flatten(), images):
ax.imshow(img)
ax.axis('off')
plt.show()
if __name__ == "__main__":
checkpoint_path = "ckpt_141_.pt" # 检查点文件名
load_and_eval(checkpoint_path)