rebel-large / README.md
PereLluis13's picture
Update README.md
9bf109f
|
raw
history blame
4.95 kB
---
language:
- en
widget:
- text: "Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic"
tags:
- seq2seq
license: cc-by-nc-sa-4.0
---
# REBEL: Relation Extraction By End-to-end Language generation
This is the model card for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By End-to-end Language generation. We present a new linearization aproach and a reframing of Relation Extraction as a seq2seq task. The paper can be found [here](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). If you use the code, please reference this work in your paper:
@inproceedings{huguet-cabot-navigli-2021-rebel,
title = "REBEL: Relation Extraction By End-to-end Language generation",
author = "Huguet Cabot, Pere-Llu{\'\i}s and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf",
}
The original repository for the paper can be found [here](https://github.com/Babelscape/rebel)
## Pipeline usage
```python3
from transformers import pipeline
triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large')
# We need to use the tokenizer manually since we need special tokens.
extracted_text = triplet_extractor.tokenizer.decode(triplet_extractor("Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic", return_tensors=True, return_text=False)[0]["generated_token_ids"])
print(extracted_text)
# Function to parse the generated text and extract the triplets
def extract_triplets(text):
triplets = []
relation = ''
for token in text.split():
if token == "<triplet>":
current = 't'
if relation != '':
triplets.append((subject, relation, object_))
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
triplets.append((subject, relation, object_))
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
triplets.append((subject, relation, object_))
return triplets
extracted_triplets = extract_triplets(extracted_text)
print(extracted_triplets)
```
## Model and Tokenizer using transformers
```python3
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
def extract_triplets(text):
triplets = []
relation = ''
for token in text.split():
if token == "<triplet>":
current = 't'
if relation != '':
triplets.append((subject, relation, object_))
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
triplets.append((subject, relation, object_))
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
triplets.append((subject, relation, object_))
return triplets
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
gen_kwargs = {
"max_length": 256,
"length_penalty": 0,
"num_beams": 3,
"num_return_sequences": 3,
}
# Text to extract triplets from
text = 'Punta Cana is a resort town in the municipality of Higüey, in La Altagracia Province, the easternmost province of the Dominican Republic.'
# Tokenizer text
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt')
# Generate
generated_tokens = model.generate(
model_inputs["input_ids"].to(model.device),
attention_mask=model_inputs["attention_mask"].to(model.device),
**gen_kwargs,
)
# Extract text
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
# Extract triplets
for idx, sentence in enumerate(decoded_preds):
print(f'Prediction triplets sentence {idx}')
print(extract_triplets(sentence))
```