|
--- |
|
language: |
|
- ar |
|
- ca |
|
- de |
|
- el |
|
- en |
|
- es |
|
- fr |
|
- hi |
|
- it |
|
- ja |
|
- ko |
|
- nl |
|
- pl |
|
- pt |
|
- ru |
|
- sv |
|
- vi |
|
- zh |
|
widget: |
|
- text: >- |
|
I Red Hot Chili Peppers sono stati formati a Los Angeles da Kiedis, Flea, il chitarrista Hillel Slovak e il batterista Jack Irons. |
|
example_title: "Italian" |
|
inference: |
|
parameters: |
|
decoder_start_token_id: 250058 |
|
src_lang: "it_IT" |
|
tgt_lang: "<triplet>" |
|
tags: |
|
- seq2seq |
|
- relation-extraction |
|
license: cc-by-nc-sa-4.0 |
|
pipeline_tag: translation |
|
--- |
|
# RED<sup>FM</sup>: a Filtered and Multilingual Relation Extraction Dataset |
|
|
|
This is a multilingual version of [REBEL](https://huggingface.co/Babelscape/rebel-large). It can be used as a standalone multulingual Relation Extraction system, or as a pretrained system to be tuned on multilingual Relation Extraction datasets. |
|
|
|
mREBEL is introduced in the ACL 2023 paper [RED^{FM}: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). We present a new multilingual Relation Extraction dataset and train a multilingual version of REBEL which reframed Relation Extraction as a seq2seq task. The paper can be found [here](https://arxiv.org/abs/2306.09802). If you use the code or model, please reference this work in your paper: |
|
|
|
@inproceedings{huguet-cabot-et-al-2023-redfm-dataset, |
|
title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset", |
|
author = "Huguet Cabot, Pere-Llu{\'\i}s and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and |
|
Navigli, Roberto", |
|
booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023", |
|
month = jul, |
|
year = "2023", |
|
address = "Toronto, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/2306.09802", |
|
} |
|
|
|
The original repository for the paper can be found [here](https://github.com/Babelscape/rebel#REDFM) |
|
|
|
Be aware that the inference widget at the right does not output special tokens, which are necessary to distinguish the subject, object and relation types. For a demo of mREBEL and its pre-training dataset check the [Spaces demo](https://huggingface.co/spaces/Babelscape/mrebel-demo). |
|
|
|
## Pipeline usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
triplet_extractor = pipeline('translation_xx_to_yy', model='Babelscape/mrebel-large-32', tokenizer='Babelscape/mrebel-large-32') |
|
# We need to use the tokenizer manually since we need special tokens. |
|
extracted_text = triplet_extractor.tokenizer.batch_decode([triplet_extractor("The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.", decoder_start_token_id=250058, src_lang="en_XX", tgt_lang="<triplet>", return_tensors=True, return_text=False)[0]["translation_token_ids"]]) # change en_XX for the language of the source. |
|
print(extracted_text[0]) |
|
# Function to parse the generated text and extract the triplets |
|
def extract_triplets_typed(text): |
|
triplets = [] |
|
relation = '' |
|
text = text.strip() |
|
current = 'x' |
|
subject, relation, object_, object_type, subject_type = '','','','','' |
|
|
|
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): |
|
if token == "<triplet>" or token == "<relation>": |
|
current = 't' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
relation = '' |
|
subject = '' |
|
elif token.startswith("<") and token.endswith(">"): |
|
if current == 't' or current == 'o': |
|
current = 's' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
object_ = '' |
|
subject_type = token[1:-1] |
|
else: |
|
current = 'o' |
|
object_type = token[1:-1] |
|
relation = '' |
|
else: |
|
if current == 't': |
|
subject += ' ' + token |
|
elif current == 's': |
|
object_ += ' ' + token |
|
elif current == 'o': |
|
relation += ' ' + token |
|
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
return triplets |
|
extracted_triplets = extract_triplets_typed(extracted_text[0]) |
|
print(extracted_triplets) |
|
``` |
|
|
|
## Model and Tokenizer using transformers |
|
|
|
```python |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
def extract_triplets_typed(text): |
|
triplets = [] |
|
relation = '' |
|
text = text.strip() |
|
current = 'x' |
|
subject, relation, object_, object_type, subject_type = '','','','','' |
|
|
|
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): |
|
if token == "<triplet>" or token == "<relation>": |
|
current = 't' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
relation = '' |
|
subject = '' |
|
elif token.startswith("<") and token.endswith(">"): |
|
if current == 't' or current == 'o': |
|
current = 's' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
object_ = '' |
|
subject_type = token[1:-1] |
|
else: |
|
current = 'o' |
|
object_type = token[1:-1] |
|
relation = '' |
|
else: |
|
if current == 't': |
|
subject += ' ' + token |
|
elif current == 's': |
|
object_ += ' ' + token |
|
elif current == 'o': |
|
relation += ' ' + token |
|
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
return triplets |
|
|
|
# Load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large-32", src_lang="en_XX", tgt_lang="tp_XX") |
|
# Here we set English ("en_XX") as source language. To change the source language swap the first token of the input for your desired language or change to supported language. For catalan ("ca_XX") or greek ("el_EL") (not included in mBART pretraining) you need a workaround: |
|
# tokenizer._src_lang = "ca_XX" |
|
# tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids("ca_XX") |
|
# tokenizer.set_src_lang_special_tokens("ca_XX") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large-32") |
|
gen_kwargs = { |
|
"max_length": 256, |
|
"length_penalty": 0, |
|
"num_beams": 3, |
|
"num_return_sequences": 3, |
|
"forced_bos_token_id": None, |
|
} |
|
|
|
# Text to extract triplets from |
|
text = 'The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.' |
|
|
|
# Tokenizer text |
|
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') |
|
|
|
# Generate |
|
generated_tokens = model.generate( |
|
model_inputs["input_ids"].to(model.device), |
|
attention_mask=model_inputs["attention_mask"].to(model.device), |
|
decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"), |
|
**gen_kwargs, |
|
) |
|
|
|
# Extract text |
|
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) |
|
|
|
# Extract triplets |
|
for idx, sentence in enumerate(decoded_preds): |
|
print(f'Prediction triplets sentence {idx}') |
|
print(extract_triplets_typed(sentence)) |
|
``` |
|
|
|
|
|
## License |
|
|
|
This model is licensed under the CC BY-SA 4.0 license. The text of the license can be found [here](https://creativecommons.org/licenses/by-nc-sa/4.0/). |