Update README.md
Browse files
README.md
CHANGED
@@ -45,6 +45,80 @@ language:
|
|
45 |
|
46 |
# Salamandra Model Card
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
## Data
|
50 |
|
|
|
45 |
|
46 |
# Salamandra Model Card
|
47 |
|
48 |
+
## How to use
|
49 |
+
|
50 |
+
> [!IMPORTANT]
|
51 |
+
> This version of Salamandra is tailored exclusively for translation tasks. It lacks chat capabilities and has not been trained with any chat instructions.
|
52 |
+
|
53 |
+
|
54 |
+
The instruction-following models use the commonly adopted ChatML template:
|
55 |
+
|
56 |
+
```
|
57 |
+
<|im_start|>system
|
58 |
+
{SYSTEM PROMPT}<|im_end|>
|
59 |
+
<|im_start|>user
|
60 |
+
{USER PROMPT}<|im_end|>
|
61 |
+
<|im_start|>assistant
|
62 |
+
{MODEL RESPONSE}<|im_end|>
|
63 |
+
<|im_start|>user
|
64 |
+
[...]
|
65 |
+
```
|
66 |
+
|
67 |
+
The easiest way to apply it is by using the tokenizer's built-in functions, as shown in the following snippet.
|
68 |
+
|
69 |
+
```python
|
70 |
+
from datetime import datetime
|
71 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
+
import transformers
|
73 |
+
import torch
|
74 |
+
|
75 |
+
model_id = "/gpfs/projects/bsc88/mt_translation/instructed_models/salamandraTA7b_instruct_mixture1/checkpoint-510"
|
76 |
+
|
77 |
+
source = 'Spanish'
|
78 |
+
target = 'Catalan'
|
79 |
+
sentence = "Pensando en ti y en este amor que parte mi universo en dos y que llega del olvido hasta mi propia voz y ara帽a mi pasado sin pedir perd贸n"
|
80 |
+
|
81 |
+
text = f"Translate the following text from {source} into {target}.\n{source}: {sentence} \n{target}:"
|
82 |
+
|
83 |
+
|
84 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
85 |
+
|
86 |
+
stop_sequence = '<|im_end|>'
|
87 |
+
eos_tokens = [tokenizer.eos_token_id,tokenizer.convert_tokens_to_ids(stop_sequence)]
|
88 |
+
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
model_id,
|
91 |
+
device_map="auto",
|
92 |
+
torch_dtype=torch.bfloat16
|
93 |
+
)
|
94 |
+
|
95 |
+
message = [ { "role": "user", "content": text } ]
|
96 |
+
date_string = datetime.today().strftime('%Y-%m-%d')
|
97 |
+
|
98 |
+
prompt = tokenizer.apply_chat_template(
|
99 |
+
message,
|
100 |
+
tokenize=False,
|
101 |
+
add_generation_prompt=True,
|
102 |
+
date_string=date_string
|
103 |
+
)
|
104 |
+
|
105 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
106 |
+
input_length = inputs.shape[1]
|
107 |
+
outputs = model.generate(input_ids=inputs.to(model.device),
|
108 |
+
max_new_tokens=400,
|
109 |
+
early_stopping=True,
|
110 |
+
eos_token_id=eos_tokens,
|
111 |
+
pad_token_id=tokenizer.eos_token_id,
|
112 |
+
num_beams=5)
|
113 |
+
|
114 |
+
print(tokenizer.decode(outputs[0, input_length:], skip_special_tokens=True))
|
115 |
+
# Pensant en tu i en aquest amor que parteix el meu univers en dos i que arriba des de l'oblit fins a la meva pr貌pia veu i esgarrapa el meu passat sense demanar perd贸
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
Using this template, each turn is preceded by a `<|im_start|>` delimiter and the role of the entity
|
120 |
+
(either `user`, for content supplied by the user, or `assistant` for LLM responses), and finished with the `<|im_end|>` token.
|
121 |
+
|
122 |
|
123 |
## Data
|
124 |
|