model_y3_research_1 / README.md
BKforKorea's picture
End of training
d960d5c verified
|
raw
history blame
2.37 kB
metadata
base_model: klue/roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: model_y3_research_1
    results: []

model_y3_research_1

This model is a fine-tuned version of klue/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9169
  • Accuracy: 0.5979
  • F1: 0.5435
  • Precision: 0.5801
  • Recall: 0.5487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9798 1.0 97 0.9334 0.5833 0.4128 0.4359 0.4577
0.9489 2.0 194 0.9621 0.4792 0.2160 0.1597 0.3333
0.9564 3.0 291 0.9505 0.5104 0.3456 0.3323 0.3764
0.8319 4.0 388 0.8693 0.6458 0.5980 0.5970 0.6167
0.7045 5.0 485 1.1875 0.5729 0.4888 0.5051 0.4891
0.6337 6.0 582 1.7888 0.6042 0.4288 0.4648 0.4752
0.3682 7.0 679 2.0383 0.5521 0.4904 0.4889 0.4967
0.2195 8.0 776 2.3023 0.5625 0.4993 0.4986 0.5055
0.0244 9.0 873 2.8742 0.5417 0.4650 0.4650 0.4674
0.1459 10.0 970 2.9738 0.5521 0.4999 0.5001 0.5157

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2