Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# Two steps only need.
|
5 |
+
|
6 |
+
First step.
|
7 |
+
```shell
|
8 |
+
git clone https://github.com/ByungKwanLee/TroL
|
9 |
+
bash install
|
10 |
+
```
|
11 |
+
|
12 |
+
Second step.
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
from config import *
|
16 |
+
from PIL import Image
|
17 |
+
from utils.utils import *
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from trol.load_trol import load_trol
|
20 |
+
from torchvision.transforms.functional import pil_to_tensor
|
21 |
+
|
22 |
+
# model selection
|
23 |
+
link = "TroL-3.8B" # [Select One] 'TroL-1.8B' | 'TroL-3.8B' | 'TroL-7B'
|
24 |
+
|
25 |
+
# User prompt
|
26 |
+
prompt_type="with_image" # Select one option "text_only", "with_image"
|
27 |
+
img_path='figures/demo.png'
|
28 |
+
question="What is the troll doing? Provide the detail in the image and imagine what the event happens."
|
29 |
+
|
30 |
+
# loading model
|
31 |
+
model, tokenizer = load_trol(link=link)
|
32 |
+
|
33 |
+
# cpu -> gpu
|
34 |
+
for param in model.parameters():
|
35 |
+
if not param.is_cuda:
|
36 |
+
param.data = param.to('cuda:0')
|
37 |
+
|
38 |
+
# prompt type -> input prompt
|
39 |
+
image_token_number = None
|
40 |
+
if prompt_type == 'with_image':
|
41 |
+
# Image Load
|
42 |
+
image = pil_to_tensor(Image.open(img_path).convert("RGB"))
|
43 |
+
if not "3.8B" in link:
|
44 |
+
image_token_number = 1225
|
45 |
+
image = F.interpolate(image.unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0)
|
46 |
+
inputs = [{'image': image, 'question': question}]
|
47 |
+
elif prompt_type=='text_only':
|
48 |
+
inputs = [{'question': question}]
|
49 |
+
|
50 |
+
# Generate
|
51 |
+
with torch.inference_mode():
|
52 |
+
_inputs = model.eval_process(inputs=inputs,
|
53 |
+
data='demo',
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
device='cuda:0',
|
56 |
+
img_token_number=image_token_number)
|
57 |
+
generate_ids = model.generate(**_inputs, max_new_tokens=256, use_cache=True)
|
58 |
+
response = output_filtering(tokenizer.batch_decode(generate_ids, skip_special_tokens=False)[0], model)
|
59 |
+
print(response)
|
60 |
+
```
|
61 |
+
|
62 |
+
So easy Let's say TroL!
|