Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
You should follow the two steps
|
6 |
+
|
7 |
+
1. Install libraries and dowloand github package [Meteor](https://github.com/ByungKwanLee/Meteor)
|
8 |
+
```bash
|
9 |
+
bash install
|
10 |
+
conda activate meteor
|
11 |
+
pip install -r requirements.txt
|
12 |
+
```
|
13 |
+
|
14 |
+
2. Run the file: demo.py in [Meteor](https://github.com/ByungKwanLee/Meteor)
|
15 |
+
|
16 |
+
You can choose prompt type: text_only or with_image!
|
17 |
+
Enjoy Meteor!
|
18 |
+
|
19 |
+
|
20 |
+
```python
|
21 |
+
import time
|
22 |
+
import torch
|
23 |
+
from config import *
|
24 |
+
from PIL import Image
|
25 |
+
from utils.utils import *
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from meteor.load_mmamba import load_mmamba
|
28 |
+
from meteor.load_meteor import load_meteor
|
29 |
+
from torchvision.transforms.functional import pil_to_tensor
|
30 |
+
|
31 |
+
# User prompt
|
32 |
+
prompt_type='with_image' # text_only / with_image
|
33 |
+
img_path='figures/demo.png'
|
34 |
+
question='Provide the detail of the image'
|
35 |
+
|
36 |
+
# loading meteor model
|
37 |
+
mmamba = load_mmamba('BK-Lee/Meteor-Mamba').cuda()
|
38 |
+
meteor, tok_meteor = load_meteor('BK-Lee/Meteor-MLM', bits=4)
|
39 |
+
|
40 |
+
# freeze model
|
41 |
+
freeze_model(mmamba)
|
42 |
+
freeze_model(meteor)
|
43 |
+
|
44 |
+
# Device
|
45 |
+
device = torch.cuda.current_device()
|
46 |
+
|
47 |
+
# prompt type -> input prompt
|
48 |
+
image_token_number = int((490/14)**2)
|
49 |
+
if prompt_type == 'with_image':
|
50 |
+
# Image Load
|
51 |
+
image = F.interpolate(pil_to_tensor(Image.open(img_path).convert("RGB")).unsqueeze(0), size=(490, 490), mode='bicubic').squeeze(0)
|
52 |
+
inputs = [{'image': image, 'question': question}]
|
53 |
+
elif prompt_type=='text_only':
|
54 |
+
inputs = [{'question': question}]
|
55 |
+
|
56 |
+
# Generate
|
57 |
+
with torch.inference_mode():
|
58 |
+
|
59 |
+
# Meteor Mamba
|
60 |
+
mmamba_inputs = mmamba.eval_process(inputs=inputs, tokenizer=tok_meteor, device=device, img_token_number=image_token_number)
|
61 |
+
if 'image' in mmamba_inputs.keys():
|
62 |
+
clip_features = meteor.clip_features(mmamba_inputs['image'])
|
63 |
+
mmamba_inputs.update({"image_features": clip_features})
|
64 |
+
mmamba_outputs = mmamba(**mmamba_inputs)
|
65 |
+
|
66 |
+
# Meteor
|
67 |
+
meteor_inputs = meteor.eval_process(inputs=inputs, data='demo', tokenizer=tok_meteor, device=device, img_token_number=image_token_number)
|
68 |
+
if 'image' in mmamba_inputs.keys():
|
69 |
+
meteor_inputs.update({"image_features": clip_features})
|
70 |
+
meteor_inputs.update({"tor_features": mmamba_outputs.tor_features})
|
71 |
+
|
72 |
+
# Generation
|
73 |
+
generate_ids = meteor.generate(**meteor_inputs, do_sample=True, max_new_tokens=128, top_p=0.95, temperature=0.9, use_cache=True)
|
74 |
+
|
75 |
+
# Text decoding
|
76 |
+
decoded_text = tok_meteor.batch_decode(generate_ids, skip_special_tokens=True)[0].split('assistant\n')[-1].split('[U')[0].strip()
|
77 |
+
print(decoded_text)
|
78 |
+
```
|