|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: BEE-spoke-data/tFINE-680m-e32-d16-gqa-1024 |
|
tags: |
|
- flan |
|
- t5 |
|
- gqa |
|
- instruct |
|
datasets: |
|
- pszemraj/flan-subsets-deduped |
|
--- |
|
|
|
|
|
# tFINE-680m-e32-d16-gqa-flan |
|
|
|
FLAN-tuned variant of a tFINE (t5) model with GQA. |
|
|
|
- 32 encoder layers |
|
- 16 decoder layers |
|
- 1024 hidden size |
|
|
|
## testing |
|
|
|
|
|
install [transformers fork with GQA updates for t5](https://github.com/pszemraj/transformers/tree/t5-gqa) (⚠️WIP🚧): |
|
|
|
```sh |
|
pip install -U git+https://github.com/pszemraj/transformers.git@t5-gqa |
|
``` |
|
|
|
then |
|
|
|
```py |
|
# pip install -U git+https://github.com/pszemraj/transformers.git@t5-gqa |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan") |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
"BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan" |
|
) |
|
|
|
prompt = "What is the capital of France?" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=64, no_repeat_ngram_size=3) |
|
print( |
|
tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
)[0] |
|
) |
|
``` |
|
|
|
## Quick eval |
|
|
|
Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan` |
|
|
|
|
|
hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 |
|
|
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|-------------|------:|------|-----:|--------|---|-----:|---|------| |
|
|boolq | 2|none | 0|acc |↑ |0.7040|± |0.0080| |
|
|openbookqa | 1|none | 0|acc |↑ |0.1580|± |0.0163| |
|
| | |none | 0|acc_norm|↑ |0.2420|± |0.0192| |
|
|piqa | 1|none | 0|acc |↑ |0.6132|± |0.0114| |
|
| | |none | 0|acc_norm|↑ |0.6159|± |0.0113| |
|
|social_iqa | 0|none | 0|acc |↑ |0.4319|± |0.0112| |
|
|tinyArc | 0|none | 25|acc_norm|↑ |0.2898|± | N/A| |
|
|tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3295|± | N/A| |
|
|tinyMMLU | 0|none | 0|acc_norm|↑ |0.2980|± | N/A| |
|
|winogrande | 1|none | 0|acc |↑ |0.5020|± |0.0141| |
|
|
|
## Training and evaluation data |
|
|
|
used config 'all' |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 17868 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Use paged_ademamix_32bit and the args are: |
|
No additional optimizer arguments |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1.0 |
|
|
|
|