Upload 9 files
Browse files- config.json +0 -1
- configuration_rwkv5.py +0 -2
- generation_config.json +12 -0
- modeling_rwkv5.py +50 -92
- rwkv_vocab_v20230424.txt +0 -0
- tokenization_rwkv_world.py +82 -193
config.json
CHANGED
@@ -21,6 +21,5 @@
|
|
21 |
"tie_word_embeddings": false,
|
22 |
"transformers_version": "4.33.1",
|
23 |
"use_cache": true,
|
24 |
-
"use_cache_kernel": true,
|
25 |
"vocab_size": 65536
|
26 |
}
|
|
|
21 |
"tie_word_embeddings": false,
|
22 |
"transformers_version": "4.33.1",
|
23 |
"use_cache": true,
|
|
|
24 |
"vocab_size": 65536
|
25 |
}
|
configuration_rwkv5.py
CHANGED
@@ -101,7 +101,6 @@ class Rwkv5Config(PretrainedConfig):
|
|
101 |
eos_token_id=0,
|
102 |
rescale_every=6,
|
103 |
tie_word_embeddings=False,
|
104 |
-
use_cache_kernel=True,
|
105 |
use_cache=True,
|
106 |
model_version="5_2",
|
107 |
**kwargs,
|
@@ -115,7 +114,6 @@ class Rwkv5Config(PretrainedConfig):
|
|
115 |
self.intermediate_size = None
|
116 |
self.layer_norm_epsilon = layer_norm_epsilon
|
117 |
self.rescale_every = rescale_every
|
118 |
-
self.use_cache_kernel = use_cache_kernel
|
119 |
self.use_cache = use_cache
|
120 |
|
121 |
self.bos_token_id = bos_token_id
|
|
|
101 |
eos_token_id=0,
|
102 |
rescale_every=6,
|
103 |
tie_word_embeddings=False,
|
|
|
104 |
use_cache=True,
|
105 |
model_version="5_2",
|
106 |
**kwargs,
|
|
|
114 |
self.intermediate_size = None
|
115 |
self.layer_norm_epsilon = layer_norm_epsilon
|
116 |
self.rescale_every = rescale_every
|
|
|
117 |
self.use_cache = use_cache
|
118 |
|
119 |
self.bos_token_id = bos_token_id
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_format": "chatml",
|
3 |
+
"eos_token_id": 0,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"max_window_size": 4096,
|
6 |
+
"max_new_tokens": 4096,
|
7 |
+
"do_sample": true,
|
8 |
+
"top_k": 0,
|
9 |
+
"top_p": 0.1,
|
10 |
+
"repetition_penalty": 1.0,
|
11 |
+
"transformers_version": "4.31.1"
|
12 |
+
}
|
modeling_rwkv5.py
CHANGED
@@ -14,6 +14,7 @@
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
"""PyTorch RWKV5 World model."""
|
|
|
17 |
import math
|
18 |
from dataclasses import dataclass
|
19 |
from pathlib import Path
|
@@ -36,7 +37,8 @@ from transformers.utils import (
|
|
36 |
logging,
|
37 |
)
|
38 |
from .configuration_rwkv5 import Rwkv5Config
|
39 |
-
|
|
|
40 |
logger = logging.get_logger(__name__)
|
41 |
|
42 |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world"
|
@@ -46,30 +48,6 @@ RWKV_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
46 |
|
47 |
]
|
48 |
|
49 |
-
def rwkv_linear_attention_v5_2_cuda(B, T, C, H, state, r, k, v, w, u, cache_kernels):
|
50 |
-
assert HEAD_SIZE == C // H
|
51 |
-
ctx.B = B
|
52 |
-
ctx.T = T
|
53 |
-
ctx.C = C
|
54 |
-
ctx.H = H
|
55 |
-
assert state.dtype == torch.float32
|
56 |
-
assert w.dtype == torch.float32
|
57 |
-
assert r.is_contiguous()
|
58 |
-
assert k.is_contiguous()
|
59 |
-
assert v.is_contiguous()
|
60 |
-
assert w.is_contiguous()
|
61 |
-
assert u.is_contiguous()
|
62 |
-
assert state.is_contiguous()
|
63 |
-
|
64 |
-
y = torch.empty((B, T, C), device=w.device, dtype=r.dtype, memory_format=torch.contiguous_format)
|
65 |
-
if r.dtype == torch.bfloat16:
|
66 |
-
cache_kernels.forward_bf16(B, T, C, H, state, r, k, v, w, u, y)
|
67 |
-
elif r.dtype == torch.float16:
|
68 |
-
cache_kernels.forward_fp16(B, T, C, H, state, r, k, v, w, u, y)
|
69 |
-
elif r.dtype == torch.float32:
|
70 |
-
cache_kernels.forward_fp32(B, T, C, H, state, r, k, v, w, u, y)
|
71 |
-
return y, state
|
72 |
-
|
73 |
def rwkv_linear_attention_v5_0(H, S, T, hidden, time_decay, time_first, receptance, key, value, lxw, lxb, ow, state, return_state=False, seq_mode=True):
|
74 |
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1,1,1)
|
75 |
time_first = torch.exp(time_first.float()).reshape(-1,1,1)
|
@@ -107,7 +85,7 @@ def rwkv_linear_attention_v5_0(H, S, T, hidden, time_decay, time_first, receptan
|
|
107 |
|
108 |
return out, state
|
109 |
|
110 |
-
def
|
111 |
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1,1,1).reshape(n_head, -1, 1)
|
112 |
time_first = time_first.float().reshape(-1,1,1).reshape(n_head, -1, 1)
|
113 |
lxw = lxw.float()
|
@@ -136,55 +114,43 @@ def rwkv_linear_attention_v5_2_cpu(H, S, T, n_head, hidden, time_decay, time_fir
|
|
136 |
out = out @ ow
|
137 |
|
138 |
return out, state
|
|
|
|
|
139 |
class RwkvSelfAttention(nn.Module):
|
140 |
def __init__(self, config, layer_id=0):
|
141 |
super().__init__()
|
142 |
self.config = config
|
143 |
self.layer_id = layer_id
|
144 |
-
|
145 |
-
# pre check if the support files existing
|
146 |
-
module_root = pathlib.Path(__file__).parent
|
147 |
-
src_files = ("rwkv5_op.cpp", "rwkv5.cu")
|
148 |
-
if any(not (module_root/src).is_file() for src in src_files):
|
149 |
-
warnings.warn("State cache kernel source files (.cpp and .cu) not found.")
|
150 |
-
self.cache_kernels = None
|
151 |
-
else:
|
152 |
-
try:
|
153 |
-
from .cpp_kernels import cache_wkv5
|
154 |
-
self.cache_kernels = cache_wkv5
|
155 |
-
except ImportError:
|
156 |
-
warnings.warn("Failed to import KV cache kernels.")
|
157 |
-
self.cache_kernels = None
|
158 |
-
self.hidden_size = config.hidden_size
|
159 |
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L146
|
160 |
-
num_attention_heads =
|
161 |
self.num_attention_heads = num_attention_heads
|
162 |
attention_hidden_size = (
|
163 |
-
config.attention_hidden_size if config.attention_hidden_size is not None else
|
164 |
)
|
165 |
self.attention_hidden_size = attention_hidden_size
|
166 |
|
167 |
if self.config.model_version == "5_2":
|
168 |
self.time_decay = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
169 |
self.time_faaaa = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
170 |
-
self.time_mix_gate = nn.Parameter(torch.empty(1, 1,
|
171 |
else:
|
172 |
self.time_decay = nn.Parameter(torch.empty(num_attention_heads))
|
173 |
self.time_first = nn.Parameter(torch.empty(num_attention_heads))
|
174 |
|
175 |
-
self.time_mix_key = nn.Parameter(torch.empty(1, 1,
|
176 |
-
self.time_mix_value = nn.Parameter(torch.empty(1, 1,
|
177 |
-
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1,
|
178 |
|
179 |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
180 |
-
self.key = nn.Linear(
|
181 |
-
self.value = nn.Linear(
|
182 |
-
self.receptance = nn.Linear(
|
183 |
if self.config.model_version == "5_2":
|
184 |
-
self.gate = nn.Linear(
|
185 |
-
self.output = nn.Linear(attention_hidden_size,
|
186 |
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/src/model.py#L190C1-L190C1
|
187 |
-
self.ln_x = nn.GroupNorm(
|
188 |
|
189 |
# TODO: maybe jit, otherwise move inside forward
|
190 |
def extract_key_value(self, H, S, T, hidden, state=None):
|
@@ -200,18 +166,19 @@ class RwkvSelfAttention(nn.Module):
|
|
200 |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
201 |
if self.config.model_version == "5_2":
|
202 |
gate = hidden* self.time_mix_gate + shifted * (1 - self.time_mix_gate)
|
203 |
-
gate = F.silu(self.gate(gate))
|
204 |
|
205 |
-
if
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
215 |
|
216 |
if state is not None:
|
217 |
state[0][:, :, self.layer_id] = hidden[:, -1]
|
@@ -231,34 +198,25 @@ class RwkvSelfAttention(nn.Module):
|
|
231 |
receptance, key, value, state = self.extract_key_value(H, S, T, hidden, state=state)
|
232 |
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
233 |
if self.config.model_version == "5_2":
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
value,
|
254 |
-
gate,
|
255 |
-
self.ln_x.weight,
|
256 |
-
self.ln_x.bias,
|
257 |
-
self.output.weight.t(),
|
258 |
-
state=layer_state,
|
259 |
-
return_state=use_cache,
|
260 |
-
seq_mode=seq_mode,
|
261 |
-
)
|
262 |
else:
|
263 |
rwkv, layer_state = rwkv_linear_attention_v5_0(
|
264 |
H,
|
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
"""PyTorch RWKV5 World model."""
|
17 |
+
|
18 |
import math
|
19 |
from dataclasses import dataclass
|
20 |
from pathlib import Path
|
|
|
37 |
logging,
|
38 |
)
|
39 |
from .configuration_rwkv5 import Rwkv5Config
|
40 |
+
|
41 |
+
|
42 |
logger = logging.get_logger(__name__)
|
43 |
|
44 |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world"
|
|
|
48 |
|
49 |
]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def rwkv_linear_attention_v5_0(H, S, T, hidden, time_decay, time_first, receptance, key, value, lxw, lxb, ow, state, return_state=False, seq_mode=True):
|
52 |
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1,1,1)
|
53 |
time_first = torch.exp(time_first.float()).reshape(-1,1,1)
|
|
|
85 |
|
86 |
return out, state
|
87 |
|
88 |
+
def rwkv_linear_attention_v5_2(H, S, T, n_head, hidden, time_decay, time_first, receptance, key, value, gate, lxw, lxb, ow, state, return_state=False, seq_mode=True):
|
89 |
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1,1,1).reshape(n_head, -1, 1)
|
90 |
time_first = time_first.float().reshape(-1,1,1).reshape(n_head, -1, 1)
|
91 |
lxw = lxw.float()
|
|
|
114 |
out = out @ ow
|
115 |
|
116 |
return out, state
|
117 |
+
|
118 |
+
|
119 |
class RwkvSelfAttention(nn.Module):
|
120 |
def __init__(self, config, layer_id=0):
|
121 |
super().__init__()
|
122 |
self.config = config
|
123 |
self.layer_id = layer_id
|
124 |
+
hidden_size = config.hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L146
|
126 |
+
num_attention_heads = hidden_size // config.head_size
|
127 |
self.num_attention_heads = num_attention_heads
|
128 |
attention_hidden_size = (
|
129 |
+
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size
|
130 |
)
|
131 |
self.attention_hidden_size = attention_hidden_size
|
132 |
|
133 |
if self.config.model_version == "5_2":
|
134 |
self.time_decay = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
135 |
self.time_faaaa = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
136 |
+
self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size))
|
137 |
else:
|
138 |
self.time_decay = nn.Parameter(torch.empty(num_attention_heads))
|
139 |
self.time_first = nn.Parameter(torch.empty(num_attention_heads))
|
140 |
|
141 |
+
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
142 |
+
self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size))
|
143 |
+
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
|
144 |
|
145 |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
146 |
+
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
147 |
+
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
148 |
+
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
149 |
if self.config.model_version == "5_2":
|
150 |
+
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
151 |
+
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
152 |
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/src/model.py#L190C1-L190C1
|
153 |
+
self.ln_x = nn.GroupNorm(hidden_size // config.head_size, hidden_size)
|
154 |
|
155 |
# TODO: maybe jit, otherwise move inside forward
|
156 |
def extract_key_value(self, H, S, T, hidden, state=None):
|
|
|
166 |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
167 |
if self.config.model_version == "5_2":
|
168 |
gate = hidden* self.time_mix_gate + shifted * (1 - self.time_mix_gate)
|
|
|
169 |
|
170 |
+
if hidden.size(1) == 1 and state is not None:
|
171 |
+
receptance = self.receptance(receptance).to(torch.float32).view(H, 1, S)
|
172 |
+
key = self.key(key).to(torch.float32).view(H, S, 1)
|
173 |
+
value = self.value(value).to(torch.float32).view(H, 1, S)
|
174 |
+
else:
|
175 |
+
# https://github.com/BlinkDL/ChatRWKV/blob/main/rwkv_pip_package/src/rwkv/model.py#L693
|
176 |
+
key = self.key(key).to(torch.float32).view(T, H, S).transpose(0, 1).transpose(-2, -1)
|
177 |
+
value = self.value(value).to(torch.float32).view(T, H, S).transpose(0, 1)
|
178 |
+
receptance = self.receptance(receptance).to(torch.float32).view(T, H, S).transpose(0, 1)
|
179 |
+
|
180 |
+
if self.config.model_version == "5_2":
|
181 |
+
gate = F.silu(self.gate(gate))
|
182 |
|
183 |
if state is not None:
|
184 |
state[0][:, :, self.layer_id] = hidden[:, -1]
|
|
|
198 |
receptance, key, value, state = self.extract_key_value(H, S, T, hidden, state=state)
|
199 |
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
200 |
if self.config.model_version == "5_2":
|
201 |
+
rwkv, layer_state = rwkv_linear_attention_v5_2(
|
202 |
+
H,
|
203 |
+
S,
|
204 |
+
T,
|
205 |
+
self.num_attention_heads,
|
206 |
+
hidden,
|
207 |
+
self.time_decay,
|
208 |
+
self.time_faaaa,
|
209 |
+
receptance,
|
210 |
+
key,
|
211 |
+
value,
|
212 |
+
gate,
|
213 |
+
self.ln_x.weight,
|
214 |
+
self.ln_x.bias,
|
215 |
+
self.output.weight.t(),
|
216 |
+
state=layer_state,
|
217 |
+
return_state=use_cache,
|
218 |
+
seq_mode=seq_mode,
|
219 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
else:
|
221 |
rwkv, layer_state = rwkv_linear_attention_v5_0(
|
222 |
H,
|
rwkv_vocab_v20230424.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenization_rwkv_world.py
CHANGED
@@ -52,186 +52,52 @@ if TYPE_CHECKING:
|
|
52 |
logger = logging.get_logger(__name__)
|
53 |
|
54 |
VOCAB_FILES_NAMES = {
|
55 |
-
"vocab_file": "rwkv_vocab_v20230424.
|
56 |
}
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
def __init__(self, special_ids):
|
96 |
-
self.root = self.Node()
|
97 |
-
self.data = {}
|
98 |
-
self.r_data = {}
|
99 |
-
self.special_ids = special_ids
|
100 |
-
|
101 |
-
def insert(self, word, data):
|
102 |
-
self.data[word] = data
|
103 |
-
self.r_data[data] = word
|
104 |
-
idx = 0
|
105 |
-
node = self.root
|
106 |
-
while idx < len(word):
|
107 |
-
w = word[idx]
|
108 |
-
is_leaf = (idx == (len(word) - 1))
|
109 |
-
leaf_data = (data if is_leaf else None)
|
110 |
-
# 不存在则插入
|
111 |
-
if not node.has_next(w):
|
112 |
-
node.add_node(w, self.Node(is_leaf=is_leaf, leaf_data=leaf_data))
|
113 |
-
# last word
|
114 |
-
node = node.get_node(w)
|
115 |
-
idx += 1
|
116 |
-
if not node.is_leaf():
|
117 |
-
node.set_leaf()
|
118 |
-
node.set_data(data)
|
119 |
-
|
120 |
-
def findStrict(self, word):
|
121 |
-
idx = 0
|
122 |
-
node = self.root
|
123 |
-
while node is not None and idx < len(word):
|
124 |
-
w = word[idx]
|
125 |
-
if not node.has_next(w):
|
126 |
-
return None
|
127 |
-
# last word
|
128 |
-
node = node.get_node(w)
|
129 |
-
idx += 1
|
130 |
-
if node.is_leaf():
|
131 |
-
return node.get_data()
|
132 |
-
return None
|
133 |
-
|
134 |
-
def prefix(self, word):
|
135 |
-
idx = 0
|
136 |
-
node = self.root
|
137 |
-
result = []
|
138 |
-
while node is not None and idx < len(word):
|
139 |
-
w = word[idx]
|
140 |
-
if not node.has_next(w):
|
141 |
-
return result
|
142 |
-
# last word
|
143 |
-
node = node.get_node(w)
|
144 |
-
if node.is_leaf():
|
145 |
-
result.append([word[:idx + 1], node.get_data()])
|
146 |
-
idx += 1
|
147 |
-
return result
|
148 |
-
|
149 |
-
def max_prefix(self, content, start_idx):
|
150 |
-
idx = start_idx
|
151 |
-
node = self.root
|
152 |
-
l = len(content)
|
153 |
-
result = [["", ], ]
|
154 |
-
while node is not None and idx < l:
|
155 |
-
w = content[idx]
|
156 |
-
if not node.has_next(w):
|
157 |
-
return result[-1]
|
158 |
-
# last word
|
159 |
-
node = node.get_node(w)
|
160 |
-
if node.is_leaf():
|
161 |
-
result.append([content[start_idx:idx + 1], node.get_data()])
|
162 |
idx += 1
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
idx = start_idx
|
167 |
-
node = self.root
|
168 |
-
l = len(content)
|
169 |
-
result = [["", (3, 0)], ]
|
170 |
-
while node is not None and idx < l:
|
171 |
-
w = content[idx]
|
172 |
-
if not node.has_next(w):
|
173 |
-
break
|
174 |
-
# last word
|
175 |
-
node = node.get_node(w)
|
176 |
-
if node.is_leaf():
|
177 |
-
result.append([content[start_idx:idx + 1], node.get_data()])
|
178 |
-
idx += 1
|
179 |
-
if len(result) > 1:
|
180 |
-
result = sorted(result, key=lambda x: x[1][1])
|
181 |
-
return result[-1]
|
182 |
-
|
183 |
-
def match(self, content, add_unk=True, unk_id=-1, **kwargs):
|
184 |
-
# length
|
185 |
-
l = len(content)
|
186 |
-
i = 0
|
187 |
-
result_list = []
|
188 |
-
while i < l:
|
189 |
-
match_word = self.max_prefix(content=content, start_idx=i)
|
190 |
-
# print(match_word)
|
191 |
-
w = match_word[0]
|
192 |
-
if len(w) > 0:
|
193 |
-
result_list.append(match_word[1])
|
194 |
-
i += len(w)
|
195 |
-
else:
|
196 |
-
if add_unk:
|
197 |
-
result_list.append(unk_id)
|
198 |
-
i += 1
|
199 |
-
return result_list
|
200 |
-
|
201 |
-
def id2str(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
202 |
-
res_str = ""
|
203 |
-
for rid in ids:
|
204 |
-
if rid in self.r_data:
|
205 |
-
if rid in end_ids:
|
206 |
-
break
|
207 |
-
if escape_special_ids and rid in self.special_ids:
|
208 |
-
continue
|
209 |
-
rstr = self.r_data[rid]
|
210 |
-
res_str += rstr
|
211 |
-
elif rid == 0:
|
212 |
break
|
213 |
-
|
214 |
-
|
215 |
-
res_str += "UNK"
|
216 |
-
return res_str
|
217 |
-
|
218 |
-
def id2str_v2(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
|
219 |
-
res_str = ""
|
220 |
-
for rid in ids:
|
221 |
-
if rid in self.r_data:
|
222 |
-
if rid in end_ids:
|
223 |
-
break
|
224 |
-
rstr = self.r_data[rid]
|
225 |
-
if escape_special_ids and rid in self.special_ids:
|
226 |
-
continue
|
227 |
-
res_str += rstr
|
228 |
-
elif rid == 0:
|
229 |
-
break
|
230 |
-
else:
|
231 |
-
print("ERROR unknown id %d" % rid)
|
232 |
-
res_str += "UNK"
|
233 |
-
return res_str
|
234 |
-
|
235 |
|
236 |
class RWKVWorldTokenizer(PreTrainedTokenizer):
|
237 |
vocab_files_names = VOCAB_FILES_NAMES
|
@@ -244,17 +110,30 @@ class RWKVWorldTokenizer(PreTrainedTokenizer):
|
|
244 |
**kwargs
|
245 |
):
|
246 |
self.add_bos_token = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
249 |
-
self.encoder = json.load(vocab_handle)
|
250 |
super().__init__(
|
251 |
errors=errors,
|
252 |
**kwargs,
|
253 |
)
|
254 |
-
self.decoder = {
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
258 |
self.errors = errors # how to handle errors in decoding
|
259 |
self.cache = {}
|
260 |
|
@@ -311,9 +190,23 @@ class RWKVWorldTokenizer(PreTrainedTokenizer):
|
|
311 |
return [1] + ([0] * len(token_ids_0))
|
312 |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
def _tokenize(self, text, **kwargs):
|
315 |
"""Tokenize a string."""
|
316 |
-
return self.
|
317 |
|
318 |
def _decode(self,
|
319 |
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
@@ -326,13 +219,9 @@ class RWKVWorldTokenizer(PreTrainedTokenizer):
|
|
326 |
if isinstance(token_ids, int):
|
327 |
if token_ids in self.all_special_ids and skip_special_tokens:
|
328 |
return ""
|
329 |
-
return self.
|
330 |
elif isinstance(token_ids, list):
|
331 |
-
return self.
|
332 |
-
token_ids,
|
333 |
-
escape_special_ids=skip_special_tokens,
|
334 |
-
**kwargs
|
335 |
-
)
|
336 |
else:
|
337 |
return token_ids
|
338 |
|
@@ -383,10 +272,10 @@ class RWKVWorldTokenizer(PreTrainedTokenizer):
|
|
383 |
) -> BatchEncoding:
|
384 |
def get_input_ids(text):
|
385 |
if isinstance(text, str):
|
386 |
-
text_id = self.
|
387 |
return text_id
|
388 |
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
389 |
-
return [self.
|
390 |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
391 |
return text
|
392 |
else:
|
@@ -448,10 +337,10 @@ class RWKVWorldTokenizer(PreTrainedTokenizer):
|
|
448 |
) -> BatchEncoding:
|
449 |
def get_input_ids(text):
|
450 |
if isinstance(text, str):
|
451 |
-
text_id = self.
|
452 |
return text_id
|
453 |
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
454 |
-
return [self.
|
455 |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
456 |
return text
|
457 |
else:
|
|
|
52 |
logger = logging.get_logger(__name__)
|
53 |
|
54 |
VOCAB_FILES_NAMES = {
|
55 |
+
"vocab_file": "rwkv_vocab_v20230424.txt",
|
56 |
}
|
57 |
|
58 |
+
class TRIE:
|
59 |
+
__slots__ = tuple("ch,to,values,front".split(","))
|
60 |
+
to:list
|
61 |
+
values:set
|
62 |
+
def __init__(self, front=None, ch=None):
|
63 |
+
self.ch = ch
|
64 |
+
self.to = [None for ch in range(256)]
|
65 |
+
self.values = set()
|
66 |
+
self.front = front
|
67 |
+
|
68 |
+
def __repr__(self):
|
69 |
+
fr = self
|
70 |
+
ret = []
|
71 |
+
while(fr!=None):
|
72 |
+
if(fr.ch!=None):
|
73 |
+
ret.append(fr.ch)
|
74 |
+
fr = fr.front
|
75 |
+
return "<TRIE %s %s>"%(ret[::-1], self.values)
|
76 |
+
|
77 |
+
def add(self, key:bytes, idx:int=0, val=None):
|
78 |
+
if(idx == len(key)):
|
79 |
+
if(val is None):
|
80 |
+
val = key
|
81 |
+
self.values.add(val)
|
82 |
+
return self
|
83 |
+
ch = key[idx]
|
84 |
+
if(self.to[ch] is None):
|
85 |
+
self.to[ch] = TRIE(front=self, ch=ch)
|
86 |
+
return self.to[ch].add(key, idx=idx+1, val=val)
|
87 |
+
|
88 |
+
def find_longest(self, key:bytes, idx:int=0):
|
89 |
+
u:TRIE = self
|
90 |
+
ch:int = key[idx]
|
91 |
+
|
92 |
+
while(u.to[ch] is not None):
|
93 |
+
u = u.to[ch]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
idx += 1
|
95 |
+
if(u.values):
|
96 |
+
ret = idx, u, u.values
|
97 |
+
if(idx==len(key)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
break
|
99 |
+
ch = key[idx]
|
100 |
+
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
class RWKVWorldTokenizer(PreTrainedTokenizer):
|
103 |
vocab_files_names = VOCAB_FILES_NAMES
|
|
|
110 |
**kwargs
|
111 |
):
|
112 |
self.add_bos_token = False
|
113 |
+
self.encoder = {}
|
114 |
+
sorted = [] # must be already sorted
|
115 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
116 |
+
lines = f.readlines()
|
117 |
+
for l in lines:
|
118 |
+
idx = int(l[:l.index(' ')])
|
119 |
+
x = eval(l[l.index(' '):l.rindex(' ')])
|
120 |
+
x = x.encode("utf-8") if isinstance(x, str) else x
|
121 |
+
assert isinstance(x, bytes)
|
122 |
+
assert len(x) == int(l[l.rindex(' '):])
|
123 |
+
sorted += [x]
|
124 |
+
self.encoder[idx] = x
|
125 |
|
|
|
|
|
126 |
super().__init__(
|
127 |
errors=errors,
|
128 |
**kwargs,
|
129 |
)
|
130 |
+
self.decoder = {}
|
131 |
+
for k,v in self.encoder.items():
|
132 |
+
self.decoder[v] = int(k)
|
133 |
+
|
134 |
+
self.trie = TRIE()
|
135 |
+
for t, i in self.decoder.items():
|
136 |
+
_ = self.trie.add(t, val=(t, i))
|
137 |
self.errors = errors # how to handle errors in decoding
|
138 |
self.cache = {}
|
139 |
|
|
|
190 |
return [1] + ([0] * len(token_ids_0))
|
191 |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
192 |
|
193 |
+
def encodeBytes(self, src:bytes):
|
194 |
+
idx:int = 0
|
195 |
+
tokens = []
|
196 |
+
while (idx < len(src)):
|
197 |
+
_idx:int = idx
|
198 |
+
idx, _, values = self.trie.find_longest(src, idx)
|
199 |
+
assert(idx != _idx)
|
200 |
+
_, token = next(iter(values))
|
201 |
+
tokens.append(token)
|
202 |
+
return tokens
|
203 |
+
|
204 |
+
def decodeBytes(self, tokens):
|
205 |
+
return b''.join(map(lambda i: self.encoder[i], tokens))
|
206 |
+
|
207 |
def _tokenize(self, text, **kwargs):
|
208 |
"""Tokenize a string."""
|
209 |
+
return self.encodeBytes(text.encode("utf-8"))
|
210 |
|
211 |
def _decode(self,
|
212 |
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
|
|
219 |
if isinstance(token_ids, int):
|
220 |
if token_ids in self.all_special_ids and skip_special_tokens:
|
221 |
return ""
|
222 |
+
return self.encoder.get(token_ids, self.unk_token)
|
223 |
elif isinstance(token_ids, list):
|
224 |
+
return self.decodeBytes(tokens).decode('utf-8')
|
|
|
|
|
|
|
|
|
225 |
else:
|
226 |
return token_ids
|
227 |
|
|
|
272 |
) -> BatchEncoding:
|
273 |
def get_input_ids(text):
|
274 |
if isinstance(text, str):
|
275 |
+
text_id = self._tokenize(text)
|
276 |
return text_id
|
277 |
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
278 |
+
return [self._tokenize(t) for t in text]
|
279 |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
280 |
return text
|
281 |
else:
|
|
|
337 |
) -> BatchEncoding:
|
338 |
def get_input_ids(text):
|
339 |
if isinstance(text, str):
|
340 |
+
text_id = self._tokenize(text)
|
341 |
return text_id
|
342 |
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
|
343 |
+
return [self._tokenize(t) for t in text]
|
344 |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
|
345 |
return text
|
346 |
else:
|