bge-small-en / README.md
ldwang's picture
upload
ed513d6
|
raw
history blame
62.3 kB
metadata
tags:
  - mteb
model-index:
  - name: bge-small-en
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 74.34328358208955
          - type: ap
            value: 37.59947775195661
          - type: f1
            value: 68.548415491933
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.04527499999999
          - type: ap
            value: 89.60696356772135
          - type: f1
            value: 93.03361469382438
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.08
          - type: f1
            value: 45.66249835363254
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 35.205999999999996
          - type: map_at_10
            value: 50.782000000000004
          - type: map_at_100
            value: 51.547
          - type: map_at_1000
            value: 51.554
          - type: map_at_3
            value: 46.515
          - type: map_at_5
            value: 49.296
          - type: mrr_at_1
            value: 35.632999999999996
          - type: mrr_at_10
            value: 50.958999999999996
          - type: mrr_at_100
            value: 51.724000000000004
          - type: mrr_at_1000
            value: 51.731
          - type: mrr_at_3
            value: 46.669
          - type: mrr_at_5
            value: 49.439
          - type: ndcg_at_1
            value: 35.205999999999996
          - type: ndcg_at_10
            value: 58.835
          - type: ndcg_at_100
            value: 62.095
          - type: ndcg_at_1000
            value: 62.255
          - type: ndcg_at_3
            value: 50.255
          - type: ndcg_at_5
            value: 55.296
          - type: precision_at_1
            value: 35.205999999999996
          - type: precision_at_10
            value: 8.421
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.365
          - type: precision_at_5
            value: 14.680000000000001
          - type: recall_at_1
            value: 35.205999999999996
          - type: recall_at_10
            value: 84.211
          - type: recall_at_100
            value: 98.43499999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 61.095
          - type: recall_at_5
            value: 73.4
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 47.52644476278646
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 39.973045724188964
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 62.28285314871488
          - type: mrr
            value: 74.52743701358659
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 80.09041909160327
          - type: cos_sim_spearman
            value: 79.96266537706944
          - type: euclidean_pearson
            value: 79.50774978162241
          - type: euclidean_spearman
            value: 79.9144715078551
          - type: manhattan_pearson
            value: 79.2062139879302
          - type: manhattan_spearman
            value: 79.35000081468212
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 85.31493506493506
          - type: f1
            value: 85.2704557977762
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.6837242810816
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 35.38881249555897
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.884999999999998
          - type: map_at_10
            value: 39.574
          - type: map_at_100
            value: 40.993
          - type: map_at_1000
            value: 41.129
          - type: map_at_3
            value: 36.089
          - type: map_at_5
            value: 38.191
          - type: mrr_at_1
            value: 34.477999999999994
          - type: mrr_at_10
            value: 45.411
          - type: mrr_at_100
            value: 46.089999999999996
          - type: mrr_at_1000
            value: 46.147
          - type: mrr_at_3
            value: 42.346000000000004
          - type: mrr_at_5
            value: 44.292
          - type: ndcg_at_1
            value: 34.477999999999994
          - type: ndcg_at_10
            value: 46.123999999999995
          - type: ndcg_at_100
            value: 51.349999999999994
          - type: ndcg_at_1000
            value: 53.578
          - type: ndcg_at_3
            value: 40.824
          - type: ndcg_at_5
            value: 43.571
          - type: precision_at_1
            value: 34.477999999999994
          - type: precision_at_10
            value: 8.841000000000001
          - type: precision_at_100
            value: 1.4460000000000002
          - type: precision_at_1000
            value: 0.192
          - type: precision_at_3
            value: 19.742
          - type: precision_at_5
            value: 14.421000000000001
          - type: recall_at_1
            value: 27.884999999999998
          - type: recall_at_10
            value: 59.087
          - type: recall_at_100
            value: 80.609
          - type: recall_at_1000
            value: 95.054
          - type: recall_at_3
            value: 44.082
          - type: recall_at_5
            value: 51.593999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.639
          - type: map_at_10
            value: 40.047
          - type: map_at_100
            value: 41.302
          - type: map_at_1000
            value: 41.425
          - type: map_at_3
            value: 37.406
          - type: map_at_5
            value: 38.934000000000005
          - type: mrr_at_1
            value: 37.707
          - type: mrr_at_10
            value: 46.082
          - type: mrr_at_100
            value: 46.745
          - type: mrr_at_1000
            value: 46.786
          - type: mrr_at_3
            value: 43.980999999999995
          - type: mrr_at_5
            value: 45.287
          - type: ndcg_at_1
            value: 37.707
          - type: ndcg_at_10
            value: 45.525
          - type: ndcg_at_100
            value: 49.976
          - type: ndcg_at_1000
            value: 51.94499999999999
          - type: ndcg_at_3
            value: 41.704
          - type: ndcg_at_5
            value: 43.596000000000004
          - type: precision_at_1
            value: 37.707
          - type: precision_at_10
            value: 8.465
          - type: precision_at_100
            value: 1.375
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 19.979
          - type: precision_at_5
            value: 14.115
          - type: recall_at_1
            value: 30.639
          - type: recall_at_10
            value: 54.775
          - type: recall_at_100
            value: 73.678
          - type: recall_at_1000
            value: 86.142
          - type: recall_at_3
            value: 43.230000000000004
          - type: recall_at_5
            value: 48.622
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.038
          - type: map_at_10
            value: 49.922
          - type: map_at_100
            value: 51.032
          - type: map_at_1000
            value: 51.085
          - type: map_at_3
            value: 46.664
          - type: map_at_5
            value: 48.588
          - type: mrr_at_1
            value: 43.95
          - type: mrr_at_10
            value: 53.566
          - type: mrr_at_100
            value: 54.318999999999996
          - type: mrr_at_1000
            value: 54.348
          - type: mrr_at_3
            value: 51.066
          - type: mrr_at_5
            value: 52.649
          - type: ndcg_at_1
            value: 43.95
          - type: ndcg_at_10
            value: 55.676
          - type: ndcg_at_100
            value: 60.126000000000005
          - type: ndcg_at_1000
            value: 61.208
          - type: ndcg_at_3
            value: 50.20400000000001
          - type: ndcg_at_5
            value: 53.038
          - type: precision_at_1
            value: 43.95
          - type: precision_at_10
            value: 8.953
          - type: precision_at_100
            value: 1.2109999999999999
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 22.256999999999998
          - type: precision_at_5
            value: 15.524
          - type: recall_at_1
            value: 38.038
          - type: recall_at_10
            value: 69.15
          - type: recall_at_100
            value: 88.31599999999999
          - type: recall_at_1000
            value: 95.993
          - type: recall_at_3
            value: 54.663
          - type: recall_at_5
            value: 61.373
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.872
          - type: map_at_10
            value: 32.912
          - type: map_at_100
            value: 33.972
          - type: map_at_1000
            value: 34.046
          - type: map_at_3
            value: 30.361
          - type: map_at_5
            value: 31.704
          - type: mrr_at_1
            value: 26.779999999999998
          - type: mrr_at_10
            value: 34.812
          - type: mrr_at_100
            value: 35.754999999999995
          - type: mrr_at_1000
            value: 35.809000000000005
          - type: mrr_at_3
            value: 32.335
          - type: mrr_at_5
            value: 33.64
          - type: ndcg_at_1
            value: 26.779999999999998
          - type: ndcg_at_10
            value: 37.623
          - type: ndcg_at_100
            value: 42.924
          - type: ndcg_at_1000
            value: 44.856
          - type: ndcg_at_3
            value: 32.574
          - type: ndcg_at_5
            value: 34.842
          - type: precision_at_1
            value: 26.779999999999998
          - type: precision_at_10
            value: 5.729
          - type: precision_at_100
            value: 0.886
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 13.559
          - type: precision_at_5
            value: 9.469
          - type: recall_at_1
            value: 24.872
          - type: recall_at_10
            value: 50.400999999999996
          - type: recall_at_100
            value: 74.954
          - type: recall_at_1000
            value: 89.56
          - type: recall_at_3
            value: 36.726
          - type: recall_at_5
            value: 42.138999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.803
          - type: map_at_10
            value: 24.348
          - type: map_at_100
            value: 25.56
          - type: map_at_1000
            value: 25.668000000000003
          - type: map_at_3
            value: 21.811
          - type: map_at_5
            value: 23.287
          - type: mrr_at_1
            value: 20.771
          - type: mrr_at_10
            value: 28.961
          - type: mrr_at_100
            value: 29.979
          - type: mrr_at_1000
            value: 30.046
          - type: mrr_at_3
            value: 26.555
          - type: mrr_at_5
            value: 28.060000000000002
          - type: ndcg_at_1
            value: 20.771
          - type: ndcg_at_10
            value: 29.335
          - type: ndcg_at_100
            value: 35.188
          - type: ndcg_at_1000
            value: 37.812
          - type: ndcg_at_3
            value: 24.83
          - type: ndcg_at_5
            value: 27.119
          - type: precision_at_1
            value: 20.771
          - type: precision_at_10
            value: 5.4350000000000005
          - type: precision_at_100
            value: 0.9480000000000001
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 11.982
          - type: precision_at_5
            value: 8.831
          - type: recall_at_1
            value: 16.803
          - type: recall_at_10
            value: 40.039
          - type: recall_at_100
            value: 65.83200000000001
          - type: recall_at_1000
            value: 84.478
          - type: recall_at_3
            value: 27.682000000000002
          - type: recall_at_5
            value: 33.535
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.345
          - type: map_at_10
            value: 37.757000000000005
          - type: map_at_100
            value: 39.141
          - type: map_at_1000
            value: 39.262
          - type: map_at_3
            value: 35.183
          - type: map_at_5
            value: 36.592
          - type: mrr_at_1
            value: 34.649
          - type: mrr_at_10
            value: 43.586999999999996
          - type: mrr_at_100
            value: 44.481
          - type: mrr_at_1000
            value: 44.542
          - type: mrr_at_3
            value: 41.29
          - type: mrr_at_5
            value: 42.642
          - type: ndcg_at_1
            value: 34.649
          - type: ndcg_at_10
            value: 43.161
          - type: ndcg_at_100
            value: 48.734
          - type: ndcg_at_1000
            value: 51.046
          - type: ndcg_at_3
            value: 39.118
          - type: ndcg_at_5
            value: 41.022
          - type: precision_at_1
            value: 34.649
          - type: precision_at_10
            value: 7.603
          - type: precision_at_100
            value: 1.209
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 18.319
          - type: precision_at_5
            value: 12.839
          - type: recall_at_1
            value: 28.345
          - type: recall_at_10
            value: 53.367
          - type: recall_at_100
            value: 76.453
          - type: recall_at_1000
            value: 91.82000000000001
          - type: recall_at_3
            value: 41.636
          - type: recall_at_5
            value: 46.760000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.419
          - type: map_at_10
            value: 31.716
          - type: map_at_100
            value: 33.152
          - type: map_at_1000
            value: 33.267
          - type: map_at_3
            value: 28.74
          - type: map_at_5
            value: 30.48
          - type: mrr_at_1
            value: 28.310999999999996
          - type: mrr_at_10
            value: 37.039
          - type: mrr_at_100
            value: 38.09
          - type: mrr_at_1000
            value: 38.145
          - type: mrr_at_3
            value: 34.437
          - type: mrr_at_5
            value: 36.024
          - type: ndcg_at_1
            value: 28.310999999999996
          - type: ndcg_at_10
            value: 37.41
          - type: ndcg_at_100
            value: 43.647999999999996
          - type: ndcg_at_1000
            value: 46.007
          - type: ndcg_at_3
            value: 32.509
          - type: ndcg_at_5
            value: 34.943999999999996
          - type: precision_at_1
            value: 28.310999999999996
          - type: precision_at_10
            value: 6.963
          - type: precision_at_100
            value: 1.1860000000000002
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 15.867999999999999
          - type: precision_at_5
            value: 11.507000000000001
          - type: recall_at_1
            value: 22.419
          - type: recall_at_10
            value: 49.28
          - type: recall_at_100
            value: 75.802
          - type: recall_at_1000
            value: 92.032
          - type: recall_at_3
            value: 35.399
          - type: recall_at_5
            value: 42.027
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.669249999999998
          - type: map_at_10
            value: 33.332583333333325
          - type: map_at_100
            value: 34.557833333333335
          - type: map_at_1000
            value: 34.67141666666666
          - type: map_at_3
            value: 30.663166666666662
          - type: map_at_5
            value: 32.14883333333333
          - type: mrr_at_1
            value: 29.193833333333334
          - type: mrr_at_10
            value: 37.47625
          - type: mrr_at_100
            value: 38.3545
          - type: mrr_at_1000
            value: 38.413166666666676
          - type: mrr_at_3
            value: 35.06741666666667
          - type: mrr_at_5
            value: 36.450666666666656
          - type: ndcg_at_1
            value: 29.193833333333334
          - type: ndcg_at_10
            value: 38.505416666666676
          - type: ndcg_at_100
            value: 43.81125
          - type: ndcg_at_1000
            value: 46.09558333333333
          - type: ndcg_at_3
            value: 33.90916666666667
          - type: ndcg_at_5
            value: 36.07666666666666
          - type: precision_at_1
            value: 29.193833333333334
          - type: precision_at_10
            value: 6.7251666666666665
          - type: precision_at_100
            value: 1.1058333333333332
          - type: precision_at_1000
            value: 0.14833333333333332
          - type: precision_at_3
            value: 15.554166666666665
          - type: precision_at_5
            value: 11.079250000000002
          - type: recall_at_1
            value: 24.669249999999998
          - type: recall_at_10
            value: 49.75583333333332
          - type: recall_at_100
            value: 73.06908333333332
          - type: recall_at_1000
            value: 88.91316666666667
          - type: recall_at_3
            value: 36.913250000000005
          - type: recall_at_5
            value: 42.48641666666666
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.044999999999998
          - type: map_at_10
            value: 30.349999999999998
          - type: map_at_100
            value: 31.273
          - type: map_at_1000
            value: 31.362000000000002
          - type: map_at_3
            value: 28.508
          - type: map_at_5
            value: 29.369
          - type: mrr_at_1
            value: 26.994
          - type: mrr_at_10
            value: 33.12
          - type: mrr_at_100
            value: 33.904
          - type: mrr_at_1000
            value: 33.967000000000006
          - type: mrr_at_3
            value: 31.365
          - type: mrr_at_5
            value: 32.124
          - type: ndcg_at_1
            value: 26.994
          - type: ndcg_at_10
            value: 34.214
          - type: ndcg_at_100
            value: 38.681
          - type: ndcg_at_1000
            value: 40.926
          - type: ndcg_at_3
            value: 30.725
          - type: ndcg_at_5
            value: 31.967000000000002
          - type: precision_at_1
            value: 26.994
          - type: precision_at_10
            value: 5.215
          - type: precision_at_100
            value: 0.807
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 12.986
          - type: precision_at_5
            value: 8.712
          - type: recall_at_1
            value: 24.044999999999998
          - type: recall_at_10
            value: 43.456
          - type: recall_at_100
            value: 63.675000000000004
          - type: recall_at_1000
            value: 80.05499999999999
          - type: recall_at_3
            value: 33.561
          - type: recall_at_5
            value: 36.767
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.672
          - type: map_at_10
            value: 22.641
          - type: map_at_100
            value: 23.75
          - type: map_at_1000
            value: 23.877000000000002
          - type: map_at_3
            value: 20.219
          - type: map_at_5
            value: 21.648
          - type: mrr_at_1
            value: 18.823
          - type: mrr_at_10
            value: 26.101999999999997
          - type: mrr_at_100
            value: 27.038
          - type: mrr_at_1000
            value: 27.118
          - type: mrr_at_3
            value: 23.669
          - type: mrr_at_5
            value: 25.173000000000002
          - type: ndcg_at_1
            value: 18.823
          - type: ndcg_at_10
            value: 27.176000000000002
          - type: ndcg_at_100
            value: 32.42
          - type: ndcg_at_1000
            value: 35.413
          - type: ndcg_at_3
            value: 22.756999999999998
          - type: ndcg_at_5
            value: 25.032
          - type: precision_at_1
            value: 18.823
          - type: precision_at_10
            value: 5.034000000000001
          - type: precision_at_100
            value: 0.895
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 10.771
          - type: precision_at_5
            value: 8.1
          - type: recall_at_1
            value: 15.672
          - type: recall_at_10
            value: 37.296
          - type: recall_at_100
            value: 60.863
          - type: recall_at_1000
            value: 82.234
          - type: recall_at_3
            value: 25.330000000000002
          - type: recall_at_5
            value: 30.964000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.633
          - type: map_at_10
            value: 32.858
          - type: map_at_100
            value: 34.038000000000004
          - type: map_at_1000
            value: 34.141
          - type: map_at_3
            value: 30.209000000000003
          - type: map_at_5
            value: 31.567
          - type: mrr_at_1
            value: 28.358
          - type: mrr_at_10
            value: 36.433
          - type: mrr_at_100
            value: 37.352000000000004
          - type: mrr_at_1000
            value: 37.41
          - type: mrr_at_3
            value: 34.033
          - type: mrr_at_5
            value: 35.246
          - type: ndcg_at_1
            value: 28.358
          - type: ndcg_at_10
            value: 37.973
          - type: ndcg_at_100
            value: 43.411
          - type: ndcg_at_1000
            value: 45.747
          - type: ndcg_at_3
            value: 32.934999999999995
          - type: ndcg_at_5
            value: 35.013
          - type: precision_at_1
            value: 28.358
          - type: precision_at_10
            value: 6.418
          - type: precision_at_100
            value: 1.02
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 14.677000000000001
          - type: precision_at_5
            value: 10.335999999999999
          - type: recall_at_1
            value: 24.633
          - type: recall_at_10
            value: 50.048
          - type: recall_at_100
            value: 73.821
          - type: recall_at_1000
            value: 90.046
          - type: recall_at_3
            value: 36.284
          - type: recall_at_5
            value: 41.370000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.133
          - type: map_at_10
            value: 31.491999999999997
          - type: map_at_100
            value: 33.062000000000005
          - type: map_at_1000
            value: 33.256
          - type: map_at_3
            value: 28.886
          - type: map_at_5
            value: 30.262
          - type: mrr_at_1
            value: 28.063
          - type: mrr_at_10
            value: 36.144
          - type: mrr_at_100
            value: 37.14
          - type: mrr_at_1000
            value: 37.191
          - type: mrr_at_3
            value: 33.762
          - type: mrr_at_5
            value: 34.997
          - type: ndcg_at_1
            value: 28.063
          - type: ndcg_at_10
            value: 36.951
          - type: ndcg_at_100
            value: 43.287
          - type: ndcg_at_1000
            value: 45.777
          - type: ndcg_at_3
            value: 32.786
          - type: ndcg_at_5
            value: 34.65
          - type: precision_at_1
            value: 28.063
          - type: precision_at_10
            value: 7.055
          - type: precision_at_100
            value: 1.476
          - type: precision_at_1000
            value: 0.22899999999999998
          - type: precision_at_3
            value: 15.481
          - type: precision_at_5
            value: 11.186
          - type: recall_at_1
            value: 23.133
          - type: recall_at_10
            value: 47.285
          - type: recall_at_100
            value: 76.176
          - type: recall_at_1000
            value: 92.176
          - type: recall_at_3
            value: 35.223
          - type: recall_at_5
            value: 40.142
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.547
          - type: map_at_10
            value: 26.374
          - type: map_at_100
            value: 27.419
          - type: map_at_1000
            value: 27.539
          - type: map_at_3
            value: 23.882
          - type: map_at_5
            value: 25.163999999999998
          - type: mrr_at_1
            value: 21.442
          - type: mrr_at_10
            value: 28.458
          - type: mrr_at_100
            value: 29.360999999999997
          - type: mrr_at_1000
            value: 29.448999999999998
          - type: mrr_at_3
            value: 25.97
          - type: mrr_at_5
            value: 27.273999999999997
          - type: ndcg_at_1
            value: 21.442
          - type: ndcg_at_10
            value: 30.897000000000002
          - type: ndcg_at_100
            value: 35.99
          - type: ndcg_at_1000
            value: 38.832
          - type: ndcg_at_3
            value: 25.944
          - type: ndcg_at_5
            value: 28.126
          - type: precision_at_1
            value: 21.442
          - type: precision_at_10
            value: 4.9910000000000005
          - type: precision_at_100
            value: 0.8109999999999999
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 11.029
          - type: precision_at_5
            value: 7.911
          - type: recall_at_1
            value: 19.547
          - type: recall_at_10
            value: 42.886
          - type: recall_at_100
            value: 66.64999999999999
          - type: recall_at_1000
            value: 87.368
          - type: recall_at_3
            value: 29.143
          - type: recall_at_5
            value: 34.544000000000004
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.572
          - type: map_at_10
            value: 25.312
          - type: map_at_100
            value: 27.062
          - type: map_at_1000
            value: 27.253
          - type: map_at_3
            value: 21.601
          - type: map_at_5
            value: 23.473
          - type: mrr_at_1
            value: 34.984
          - type: mrr_at_10
            value: 46.406
          - type: mrr_at_100
            value: 47.179
          - type: mrr_at_1000
            value: 47.21
          - type: mrr_at_3
            value: 43.485
          - type: mrr_at_5
            value: 45.322
          - type: ndcg_at_1
            value: 34.984
          - type: ndcg_at_10
            value: 34.344
          - type: ndcg_at_100
            value: 41.015
          - type: ndcg_at_1000
            value: 44.366
          - type: ndcg_at_3
            value: 29.119
          - type: ndcg_at_5
            value: 30.825999999999997
          - type: precision_at_1
            value: 34.984
          - type: precision_at_10
            value: 10.358
          - type: precision_at_100
            value: 1.762
          - type: precision_at_1000
            value: 0.23900000000000002
          - type: precision_at_3
            value: 21.368000000000002
          - type: precision_at_5
            value: 15.948
          - type: recall_at_1
            value: 15.572
          - type: recall_at_10
            value: 39.367999999999995
          - type: recall_at_100
            value: 62.183
          - type: recall_at_1000
            value: 80.92200000000001
          - type: recall_at_3
            value: 26.131999999999998
          - type: recall_at_5
            value: 31.635999999999996
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.848
          - type: map_at_10
            value: 19.25
          - type: map_at_100
            value: 27.193
          - type: map_at_1000
            value: 28.721999999999998
          - type: map_at_3
            value: 13.968
          - type: map_at_5
            value: 16.283
          - type: mrr_at_1
            value: 68.75
          - type: mrr_at_10
            value: 76.25
          - type: mrr_at_100
            value: 76.534
          - type: mrr_at_1000
            value: 76.53999999999999
          - type: mrr_at_3
            value: 74.667
          - type: mrr_at_5
            value: 75.86699999999999
          - type: ndcg_at_1
            value: 56.00000000000001
          - type: ndcg_at_10
            value: 41.426
          - type: ndcg_at_100
            value: 45.660000000000004
          - type: ndcg_at_1000
            value: 53.02
          - type: ndcg_at_3
            value: 46.581
          - type: ndcg_at_5
            value: 43.836999999999996
          - type: precision_at_1
            value: 68.75
          - type: precision_at_10
            value: 32.800000000000004
          - type: precision_at_100
            value: 10.440000000000001
          - type: precision_at_1000
            value: 1.9980000000000002
          - type: precision_at_3
            value: 49.667
          - type: precision_at_5
            value: 42.25
          - type: recall_at_1
            value: 8.848
          - type: recall_at_10
            value: 24.467
          - type: recall_at_100
            value: 51.344
          - type: recall_at_1000
            value: 75.235
          - type: recall_at_3
            value: 15.329
          - type: recall_at_5
            value: 18.892999999999997
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 48.95
          - type: f1
            value: 43.44563593360779
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 78.036
          - type: map_at_10
            value: 85.639
          - type: map_at_100
            value: 85.815
          - type: map_at_1000
            value: 85.829
          - type: map_at_3
            value: 84.795
          - type: map_at_5
            value: 85.336
          - type: mrr_at_1
            value: 84.353
          - type: mrr_at_10
            value: 90.582
          - type: mrr_at_100
            value: 90.617
          - type: mrr_at_1000
            value: 90.617
          - type: mrr_at_3
            value: 90.132
          - type: mrr_at_5
            value: 90.447
          - type: ndcg_at_1
            value: 84.353
          - type: ndcg_at_10
            value: 89.003
          - type: ndcg_at_100
            value: 89.60000000000001
          - type: ndcg_at_1000
            value: 89.836
          - type: ndcg_at_3
            value: 87.81400000000001
          - type: ndcg_at_5
            value: 88.478
          - type: precision_at_1
            value: 84.353
          - type: precision_at_10
            value: 10.482
          - type: precision_at_100
            value: 1.099
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 33.257999999999996
          - type: precision_at_5
            value: 20.465
          - type: recall_at_1
            value: 78.036
          - type: recall_at_10
            value: 94.517
          - type: recall_at_100
            value: 96.828
          - type: recall_at_1000
            value: 98.261
          - type: recall_at_3
            value: 91.12
          - type: recall_at_5
            value: 92.946
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.191
          - type: map_at_10
            value: 32.369
          - type: map_at_100
            value: 34.123999999999995
          - type: map_at_1000
            value: 34.317
          - type: map_at_3
            value: 28.71
          - type: map_at_5
            value: 30.607
          - type: mrr_at_1
            value: 40.894999999999996
          - type: mrr_at_10
            value: 48.842
          - type: mrr_at_100
            value: 49.599
          - type: mrr_at_1000
            value: 49.647000000000006
          - type: mrr_at_3
            value: 46.785
          - type: mrr_at_5
            value: 47.672
          - type: ndcg_at_1
            value: 40.894999999999996
          - type: ndcg_at_10
            value: 39.872
          - type: ndcg_at_100
            value: 46.126
          - type: ndcg_at_1000
            value: 49.476
          - type: ndcg_at_3
            value: 37.153000000000006
          - type: ndcg_at_5
            value: 37.433
          - type: precision_at_1
            value: 40.894999999999996
          - type: precision_at_10
            value: 10.818
          - type: precision_at_100
            value: 1.73
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 25.051000000000002
          - type: precision_at_5
            value: 17.531
          - type: recall_at_1
            value: 20.191
          - type: recall_at_10
            value: 45.768
          - type: recall_at_100
            value: 68.82000000000001
          - type: recall_at_1000
            value: 89.133
          - type: recall_at_3
            value: 33.296
          - type: recall_at_5
            value: 38.022
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.257
          - type: map_at_10
            value: 61.467000000000006
          - type: map_at_100
            value: 62.364
          - type: map_at_1000
            value: 62.424
          - type: map_at_3
            value: 58.228
          - type: map_at_5
            value: 60.283
          - type: mrr_at_1
            value: 78.515
          - type: mrr_at_10
            value: 84.191
          - type: mrr_at_100
            value: 84.378
          - type: mrr_at_1000
            value: 84.385
          - type: mrr_at_3
            value: 83.284
          - type: mrr_at_5
            value: 83.856
          - type: ndcg_at_1
            value: 78.515
          - type: ndcg_at_10
            value: 69.78999999999999
          - type: ndcg_at_100
            value: 72.886
          - type: ndcg_at_1000
            value: 74.015
          - type: ndcg_at_3
            value: 65.23
          - type: ndcg_at_5
            value: 67.80199999999999
          - type: precision_at_1
            value: 78.515
          - type: precision_at_10
            value: 14.519000000000002
          - type: precision_at_100
            value: 1.694
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 41.702
          - type: precision_at_5
            value: 27.046999999999997
          - type: recall_at_1
            value: 39.257
          - type: recall_at_10
            value: 72.59299999999999
          - type: recall_at_100
            value: 84.679
          - type: recall_at_1000
            value: 92.12
          - type: recall_at_3
            value: 62.552
          - type: recall_at_5
            value: 67.616
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 91.5152
          - type: ap
            value: 87.64584669595709
          - type: f1
            value: 91.50605576428437
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.926000000000002
          - type: map_at_10
            value: 34.049
          - type: map_at_100
            value: 35.213
          - type: map_at_1000
            value: 35.265
          - type: map_at_3
            value: 30.309
          - type: map_at_5
            value: 32.407000000000004
          - type: mrr_at_1
            value: 22.55
          - type: mrr_at_10
            value: 34.657
          - type: mrr_at_100
            value: 35.760999999999996
          - type: mrr_at_1000
            value: 35.807
          - type: mrr_at_3
            value: 30.989
          - type: mrr_at_5
            value: 33.039
          - type: ndcg_at_1
            value: 22.55
          - type: ndcg_at_10
            value: 40.842
          - type: ndcg_at_100
            value: 46.436
          - type: ndcg_at_1000
            value: 47.721999999999994
          - type: ndcg_at_3
            value: 33.209
          - type: ndcg_at_5
            value: 36.943
          - type: precision_at_1
            value: 22.55
          - type: precision_at_10
            value: 6.447
          - type: precision_at_100
            value: 0.9249999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.136000000000001
          - type: precision_at_5
            value: 10.381
          - type: recall_at_1
            value: 21.926000000000002
          - type: recall_at_10
            value: 61.724999999999994
          - type: recall_at_100
            value: 87.604
          - type: recall_at_1000
            value: 97.421
          - type: recall_at_3
            value: 40.944
          - type: recall_at_5
            value: 49.915
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.54765161878704
          - type: f1
            value: 93.3298945415573
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 75.71591427268582
          - type: f1
            value: 59.32113870474471
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 75.83053127101547
          - type: f1
            value: 73.60757944876475
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 78.72562205783457
          - type: f1
            value: 78.63761662505502
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.37935633767996
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.55270546130387
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.462692753143834
          - type: mrr
            value: 31.497569753511563
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.646
          - type: map_at_10
            value: 12.498
          - type: map_at_100
            value: 15.486
          - type: map_at_1000
            value: 16.805999999999997
          - type: map_at_3
            value: 9.325
          - type: map_at_5
            value: 10.751
          - type: mrr_at_1
            value: 43.034
          - type: mrr_at_10
            value: 52.662
          - type: mrr_at_100
            value: 53.189
          - type: mrr_at_1000
            value: 53.25
          - type: mrr_at_3
            value: 50.929
          - type: mrr_at_5
            value: 51.92
          - type: ndcg_at_1
            value: 41.796
          - type: ndcg_at_10
            value: 33.477000000000004
          - type: ndcg_at_100
            value: 29.996000000000002
          - type: ndcg_at_1000
            value: 38.864
          - type: ndcg_at_3
            value: 38.940000000000005
          - type: ndcg_at_5
            value: 36.689
          - type: precision_at_1
            value: 43.034
          - type: precision_at_10
            value: 24.799
          - type: precision_at_100
            value: 7.432999999999999
          - type: precision_at_1000
            value: 1.9929999999999999
          - type: precision_at_3
            value: 36.842000000000006
          - type: precision_at_5
            value: 32.135999999999996
          - type: recall_at_1
            value: 5.646
          - type: recall_at_10
            value: 15.963
          - type: recall_at_100
            value: 29.492
          - type: recall_at_1000
            value: 61.711000000000006
          - type: recall_at_3
            value: 10.585
          - type: recall_at_5
            value: 12.753999999999998
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.602
          - type: map_at_10
            value: 41.545
          - type: map_at_100
            value: 42.644999999999996
          - type: map_at_1000
            value: 42.685
          - type: map_at_3
            value: 37.261
          - type: map_at_5
            value: 39.706
          - type: mrr_at_1
            value: 31.141000000000002
          - type: mrr_at_10
            value: 44.139
          - type: mrr_at_100
            value: 44.997
          - type: mrr_at_1000
            value: 45.025999999999996
          - type: mrr_at_3
            value: 40.503
          - type: mrr_at_5
            value: 42.64
          - type: ndcg_at_1
            value: 31.141000000000002
          - type: ndcg_at_10
            value: 48.995
          - type: ndcg_at_100
            value: 53.788000000000004
          - type: ndcg_at_1000
            value: 54.730000000000004
          - type: ndcg_at_3
            value: 40.844
          - type: ndcg_at_5
            value: 44.955
          - type: precision_at_1
            value: 31.141000000000002
          - type: precision_at_10
            value: 8.233
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 18.579
          - type: precision_at_5
            value: 13.533999999999999
          - type: recall_at_1
            value: 27.602
          - type: recall_at_10
            value: 69.216
          - type: recall_at_100
            value: 90.252
          - type: recall_at_1000
            value: 97.27
          - type: recall_at_3
            value: 47.987
          - type: recall_at_5
            value: 57.438
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.949
          - type: map_at_10
            value: 84.89999999999999
          - type: map_at_100
            value: 85.531
          - type: map_at_1000
            value: 85.548
          - type: map_at_3
            value: 82.027
          - type: map_at_5
            value: 83.853
          - type: mrr_at_1
            value: 81.69999999999999
          - type: mrr_at_10
            value: 87.813
          - type: mrr_at_100
            value: 87.917
          - type: mrr_at_1000
            value: 87.91799999999999
          - type: mrr_at_3
            value: 86.938
          - type: mrr_at_5
            value: 87.53999999999999
          - type: ndcg_at_1
            value: 81.75
          - type: ndcg_at_10
            value: 88.55499999999999
          - type: ndcg_at_100
            value: 89.765
          - type: ndcg_at_1000
            value: 89.871
          - type: ndcg_at_3
            value: 85.905
          - type: ndcg_at_5
            value: 87.41
          - type: precision_at_1
            value: 81.75
          - type: precision_at_10
            value: 13.403
          - type: precision_at_100
            value: 1.528
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.597
          - type: precision_at_5
            value: 24.69
          - type: recall_at_1
            value: 70.949
          - type: recall_at_10
            value: 95.423
          - type: recall_at_100
            value: 99.509
          - type: recall_at_1000
            value: 99.982
          - type: recall_at_3
            value: 87.717
          - type: recall_at_5
            value: 92.032
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 51.76962893449579
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 62.32897690686379
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.478
          - type: map_at_10
            value: 11.994
          - type: map_at_100
            value: 13.977
          - type: map_at_1000
            value: 14.295
          - type: map_at_3
            value: 8.408999999999999
          - type: map_at_5
            value: 10.024
          - type: mrr_at_1
            value: 22.1
          - type: mrr_at_10
            value: 33.526
          - type: mrr_at_100
            value: 34.577000000000005
          - type: mrr_at_1000
            value: 34.632000000000005
          - type: mrr_at_3
            value: 30.217
          - type: mrr_at_5
            value: 31.962000000000003
          - type: ndcg_at_1
            value: 22.1
          - type: ndcg_at_10
            value: 20.191
          - type: ndcg_at_100
            value: 27.954
          - type: ndcg_at_1000
            value: 33.491
          - type: ndcg_at_3
            value: 18.787000000000003
          - type: ndcg_at_5
            value: 16.378999999999998
          - type: precision_at_1
            value: 22.1
          - type: precision_at_10
            value: 10.69
          - type: precision_at_100
            value: 2.1919999999999997
          - type: precision_at_1000
            value: 0.35200000000000004
          - type: precision_at_3
            value: 17.732999999999997
          - type: precision_at_5
            value: 14.499999999999998
          - type: recall_at_1
            value: 4.478
          - type: recall_at_10
            value: 21.657
          - type: recall_at_100
            value: 44.54
          - type: recall_at_1000
            value: 71.542
          - type: recall_at_3
            value: 10.778
          - type: recall_at_5
            value: 14.687
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.82325259156718
          - type: cos_sim_spearman
            value: 79.2463589100662
          - type: euclidean_pearson
            value: 80.48318380496771
          - type: euclidean_spearman
            value: 79.34451935199979
          - type: manhattan_pearson
            value: 80.39041824178759
          - type: manhattan_spearman
            value: 79.23002892700211
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 85.74130231431258
          - type: cos_sim_spearman
            value: 78.36856568042397
          - type: euclidean_pearson
            value: 82.48301631890303
          - type: euclidean_spearman
            value: 78.28376980722732
          - type: manhattan_pearson
            value: 82.43552075450525
          - type: manhattan_spearman
            value: 78.22702443947126
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.96138619461459
          - type: cos_sim_spearman
            value: 81.85436343502379
          - type: euclidean_pearson
            value: 81.82895226665367
          - type: euclidean_spearman
            value: 82.22707349602916
          - type: manhattan_pearson
            value: 81.66303369445873
          - type: manhattan_spearman
            value: 82.05030197179455
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 80.05481244198648
          - type: cos_sim_spearman
            value: 80.85052504637808
          - type: euclidean_pearson
            value: 80.86728419744497
          - type: euclidean_spearman
            value: 81.033786401512
          - type: manhattan_pearson
            value: 80.90107531061103
          - type: manhattan_spearman
            value: 81.11374116827795
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 84.615220756399
          - type: cos_sim_spearman
            value: 86.46858500002092
          - type: euclidean_pearson
            value: 86.08307800247586
          - type: euclidean_spearman
            value: 86.72691443870013
          - type: manhattan_pearson
            value: 85.96155594487269
          - type: manhattan_spearman
            value: 86.605909505275
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.14363913634436
          - type: cos_sim_spearman
            value: 84.48430226487102
          - type: euclidean_pearson
            value: 83.75303424801902
          - type: euclidean_spearman
            value: 84.56762380734538
          - type: manhattan_pearson
            value: 83.6135447165928
          - type: manhattan_spearman
            value: 84.39898212616731
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.09909252554525
          - type: cos_sim_spearman
            value: 85.70951402743276
          - type: euclidean_pearson
            value: 87.1991936239908
          - type: euclidean_spearman
            value: 86.07745840612071
          - type: manhattan_pearson
            value: 87.25039137549952
          - type: manhattan_spearman
            value: 85.99938746659761
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.529332093413615
          - type: cos_sim_spearman
            value: 65.38177340147439
          - type: euclidean_pearson
            value: 66.35278011412136
          - type: euclidean_spearman
            value: 65.47147267032997
          - type: manhattan_pearson
            value: 66.71804682408693
          - type: manhattan_spearman
            value: 65.67406521423597
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 82.45802942885662
          - type: cos_sim_spearman
            value: 84.8853341842566
          - type: euclidean_pearson
            value: 84.60915021096707
          - type: euclidean_spearman
            value: 85.11181242913666
          - type: manhattan_pearson
            value: 84.38600521210364
          - type: manhattan_spearman
            value: 84.89045417981723
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 85.92793380635129
          - type: mrr
            value: 95.85834191226348
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 55.74400000000001
          - type: map_at_10
            value: 65.455
          - type: map_at_100
            value: 66.106
          - type: map_at_1000
            value: 66.129
          - type: map_at_3
            value: 62.719
          - type: map_at_5
            value: 64.441
          - type: mrr_at_1
            value: 58.667
          - type: mrr_at_10
            value: 66.776
          - type: mrr_at_100
            value: 67.363
          - type: mrr_at_1000
            value: 67.384
          - type: mrr_at_3
            value: 64.889
          - type: mrr_at_5
            value: 66.122
          - type: ndcg_at_1
            value: 58.667
          - type: ndcg_at_10
            value: 69.904
          - type: ndcg_at_100
            value: 72.807
          - type: ndcg_at_1000
            value: 73.423
          - type: ndcg_at_3
            value: 65.405
          - type: ndcg_at_5
            value: 67.86999999999999
          - type: precision_at_1
            value: 58.667
          - type: precision_at_10
            value: 9.3
          - type: precision_at_100
            value: 1.08
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 25.444
          - type: precision_at_5
            value: 17
          - type: recall_at_1
            value: 55.74400000000001
          - type: recall_at_10
            value: 82.122
          - type: recall_at_100
            value: 95.167
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 70.14399999999999
          - type: recall_at_5
            value: 76.417
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.86534653465347
          - type: cos_sim_ap
            value: 96.54142419791388
          - type: cos_sim_f1
            value: 93.07535641547861
          - type: cos_sim_precision
            value: 94.81327800829875
          - type: cos_sim_recall
            value: 91.4
          - type: dot_accuracy
            value: 99.86435643564356
          - type: dot_ap
            value: 96.53682260449868
          - type: dot_f1
            value: 92.98515104966718
          - type: dot_precision
            value: 95.27806925498426
          - type: dot_recall
            value: 90.8
          - type: euclidean_accuracy
            value: 99.86336633663366
          - type: euclidean_ap
            value: 96.5228676185697
          - type: euclidean_f1
            value: 92.9735234215886
          - type: euclidean_precision
            value: 94.70954356846472
          - type: euclidean_recall
            value: 91.3
          - type: manhattan_accuracy
            value: 99.85841584158416
          - type: manhattan_ap
            value: 96.50392760934032
          - type: manhattan_f1
            value: 92.84642321160581
          - type: manhattan_precision
            value: 92.8928928928929
          - type: manhattan_recall
            value: 92.80000000000001
          - type: max_accuracy
            value: 99.86534653465347
          - type: max_ap
            value: 96.54142419791388
          - type: max_f1
            value: 93.07535641547861
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 61.08285408766616
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.640675309010604
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 53.20333913710715
          - type: mrr
            value: 54.088813555725324
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.79465221925075
          - type: cos_sim_spearman
            value: 30.530816059163634
          - type: dot_pearson
            value: 31.364837244718043
          - type: dot_spearman
            value: 30.79726823684003
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22599999999999998
          - type: map_at_10
            value: 1.735
          - type: map_at_100
            value: 8.978
          - type: map_at_1000
            value: 20.851
          - type: map_at_3
            value: 0.613
          - type: map_at_5
            value: 0.964
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 92.867
          - type: mrr_at_100
            value: 92.867
          - type: mrr_at_1000
            value: 92.867
          - type: mrr_at_3
            value: 92.667
          - type: mrr_at_5
            value: 92.667
          - type: ndcg_at_1
            value: 82
          - type: ndcg_at_10
            value: 73.164
          - type: ndcg_at_100
            value: 51.878
          - type: ndcg_at_1000
            value: 44.864
          - type: ndcg_at_3
            value: 79.184
          - type: ndcg_at_5
            value: 76.39
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 76.2
          - type: precision_at_100
            value: 52.459999999999994
          - type: precision_at_1000
            value: 19.692
          - type: precision_at_3
            value: 82.667
          - type: precision_at_5
            value: 80
          - type: recall_at_1
            value: 0.22599999999999998
          - type: recall_at_10
            value: 1.942
          - type: recall_at_100
            value: 12.342
          - type: recall_at_1000
            value: 41.42
          - type: recall_at_3
            value: 0.637
          - type: recall_at_5
            value: 1.034
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.567
          - type: map_at_10
            value: 13.116
          - type: map_at_100
            value: 19.39
          - type: map_at_1000
            value: 20.988
          - type: map_at_3
            value: 7.109
          - type: map_at_5
            value: 9.950000000000001
          - type: mrr_at_1
            value: 42.857
          - type: mrr_at_10
            value: 57.404999999999994
          - type: mrr_at_100
            value: 58.021
          - type: mrr_at_1000
            value: 58.021
          - type: mrr_at_3
            value: 54.762
          - type: mrr_at_5
            value: 56.19
          - type: ndcg_at_1
            value: 38.775999999999996
          - type: ndcg_at_10
            value: 30.359
          - type: ndcg_at_100
            value: 41.284
          - type: ndcg_at_1000
            value: 52.30200000000001
          - type: ndcg_at_3
            value: 36.744
          - type: ndcg_at_5
            value: 34.326
          - type: precision_at_1
            value: 42.857
          - type: precision_at_10
            value: 26.122
          - type: precision_at_100
            value: 8.082
          - type: precision_at_1000
            value: 1.559
          - type: precision_at_3
            value: 40.136
          - type: precision_at_5
            value: 35.510000000000005
          - type: recall_at_1
            value: 3.567
          - type: recall_at_10
            value: 19.045
          - type: recall_at_100
            value: 49.979
          - type: recall_at_1000
            value: 84.206
          - type: recall_at_3
            value: 8.52
          - type: recall_at_5
            value: 13.103000000000002
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 68.8394
          - type: ap
            value: 13.454399712443099
          - type: f1
            value: 53.04963076364322
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 60.546123372948514
          - type: f1
            value: 60.86952793277713
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 49.10042955060234
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.03308100375514
          - type: cos_sim_ap
            value: 71.08284605869684
          - type: cos_sim_f1
            value: 65.42539436255494
          - type: cos_sim_precision
            value: 64.14807302231237
          - type: cos_sim_recall
            value: 66.75461741424802
          - type: dot_accuracy
            value: 84.68736961316088
          - type: dot_ap
            value: 69.20524036530992
          - type: dot_f1
            value: 63.54893953365829
          - type: dot_precision
            value: 63.45698500394633
          - type: dot_recall
            value: 63.641160949868066
          - type: euclidean_accuracy
            value: 85.07480479227513
          - type: euclidean_ap
            value: 71.14592761009864
          - type: euclidean_f1
            value: 65.43814432989691
          - type: euclidean_precision
            value: 63.95465994962216
          - type: euclidean_recall
            value: 66.99208443271768
          - type: manhattan_accuracy
            value: 85.06288370984085
          - type: manhattan_ap
            value: 71.07289742593868
          - type: manhattan_f1
            value: 65.37585421412301
          - type: manhattan_precision
            value: 62.816147859922175
          - type: manhattan_recall
            value: 68.15303430079156
          - type: max_accuracy
            value: 85.07480479227513
          - type: max_ap
            value: 71.14592761009864
          - type: max_f1
            value: 65.43814432989691
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.79058485659952
          - type: cos_sim_ap
            value: 83.7183187008759
          - type: cos_sim_f1
            value: 75.86921142180798
          - type: cos_sim_precision
            value: 73.00683371298405
          - type: cos_sim_recall
            value: 78.96519864490298
          - type: dot_accuracy
            value: 87.0085768618776
          - type: dot_ap
            value: 81.87467488474279
          - type: dot_f1
            value: 74.04188363990559
          - type: dot_precision
            value: 72.10507114191901
          - type: dot_recall
            value: 76.08561749307053
          - type: euclidean_accuracy
            value: 87.8332751193387
          - type: euclidean_ap
            value: 83.83585648120315
          - type: euclidean_f1
            value: 76.02582177042369
          - type: euclidean_precision
            value: 73.36388371759989
          - type: euclidean_recall
            value: 78.88820449645827
          - type: manhattan_accuracy
            value: 87.87208444910156
          - type: manhattan_ap
            value: 83.8101950642973
          - type: manhattan_f1
            value: 75.90454195535027
          - type: manhattan_precision
            value: 72.44419564761039
          - type: manhattan_recall
            value: 79.71204188481676
          - type: max_accuracy
            value: 87.87208444910156
          - type: max_ap
            value: 83.83585648120315
          - type: max_f1
            value: 76.02582177042369