ryanzhangfan
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -49,7 +49,7 @@ from processing_emu3 import Emu3Processor
|
|
49 |
|
50 |
# model path
|
51 |
EMU_HUB = "BAAI/Emu3-Chat"
|
52 |
-
VQ_HUB = "BAAI/Emu3-
|
53 |
|
54 |
# prepare model and processor
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -60,7 +60,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
60 |
trust_remote_code=True,
|
61 |
)
|
62 |
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True)
|
64 |
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
|
65 |
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
|
66 |
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
|
@@ -73,19 +73,23 @@ inputs = processor(
|
|
73 |
text=text,
|
74 |
image=image,
|
75 |
mode='U',
|
76 |
-
padding_side="left",
|
77 |
-
padding="longest",
|
78 |
return_tensors="pt",
|
|
|
79 |
)
|
80 |
|
81 |
# prepare hyper parameters
|
82 |
-
GENERATION_CONFIG = GenerationConfig(
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# generate
|
85 |
outputs = model.generate(
|
86 |
inputs.input_ids.to("cuda:0"),
|
87 |
GENERATION_CONFIG,
|
88 |
-
|
89 |
)
|
90 |
|
91 |
outputs = outputs[:, inputs.input_ids.shape[-1]:]
|
|
|
49 |
|
50 |
# model path
|
51 |
EMU_HUB = "BAAI/Emu3-Chat"
|
52 |
+
VQ_HUB = "BAAI/Emu3-VisionTokenier"
|
53 |
|
54 |
# prepare model and processor
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
60 |
trust_remote_code=True,
|
61 |
)
|
62 |
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")
|
64 |
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
|
65 |
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
|
66 |
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
|
|
|
73 |
text=text,
|
74 |
image=image,
|
75 |
mode='U',
|
|
|
|
|
76 |
return_tensors="pt",
|
77 |
+
padding="longest",
|
78 |
)
|
79 |
|
80 |
# prepare hyper parameters
|
81 |
+
GENERATION_CONFIG = GenerationConfig(
|
82 |
+
pad_token_id=tokenizer.pad_token_id,
|
83 |
+
bos_token_id=tokenizer.bos_token_id,
|
84 |
+
eos_token_id=tokenizer.eos_token_id,
|
85 |
+
max_new_tokens=1024,
|
86 |
+
)
|
87 |
|
88 |
# generate
|
89 |
outputs = model.generate(
|
90 |
inputs.input_ids.to("cuda:0"),
|
91 |
GENERATION_CONFIG,
|
92 |
+
attention_mask=pos_inputs.attention_mask.to("cuda:0"),
|
93 |
)
|
94 |
|
95 |
outputs = outputs[:, inputs.input_ids.shape[-1]:]
|