Upload modeling_aquila.py with huggingface_hub
Browse files- modeling_aquila.py +783 -257
modeling_aquila.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
# and OPT implementations in this library. It has been modified from its
|
@@ -17,61 +17,64 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
|
|
|
|
|
|
|
21 |
import math
|
|
|
22 |
from typing import List, Optional, Tuple, Union
|
23 |
|
24 |
import torch
|
|
|
25 |
import torch.utils.checkpoint
|
26 |
from torch import nn
|
27 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
|
29 |
from transformers.activations import ACT2FN
|
30 |
-
from transformers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
from transformers.modeling_utils import PreTrainedModel
|
32 |
-
from transformers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
from .configuration_aquila import AquilaConfig
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
42 |
-
def _make_causal_mask(
|
43 |
-
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
44 |
-
):
|
45 |
-
"""
|
46 |
-
Make causal mask used for bi-directional self-attention.
|
47 |
-
"""
|
48 |
-
bsz, tgt_len = input_ids_shape
|
49 |
-
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
50 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
51 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
52 |
-
mask = mask.to(dtype)
|
53 |
-
|
54 |
-
if past_key_values_length > 0:
|
55 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
56 |
-
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
57 |
|
58 |
|
59 |
-
|
60 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
61 |
-
"""
|
62 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
63 |
-
"""
|
64 |
-
bsz, src_len = mask.size()
|
65 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
66 |
|
67 |
-
|
68 |
|
69 |
-
inverted_mask = 1.0 - expanded_mask
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Aquila
|
75 |
class AquilaRMSNorm(nn.Module):
|
76 |
def __init__(self, hidden_size, eps=1e-6):
|
77 |
"""
|
@@ -83,92 +86,94 @@ class AquilaRMSNorm(nn.Module):
|
|
83 |
|
84 |
def forward(self, hidden_states):
|
85 |
input_dtype = hidden_states.dtype
|
86 |
-
|
|
|
87 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
|
88 |
|
89 |
-
return (self.weight * hidden_states).to(input_dtype)
|
90 |
|
|
|
91 |
|
92 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Aquila
|
93 |
-
class AquilaRotaryEmbedding(torch.nn.Module):
|
94 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
95 |
-
super().__init__()
|
96 |
|
|
|
|
|
|
|
|
|
97 |
self.dim = dim
|
98 |
self.max_position_embeddings = max_position_embeddings
|
99 |
self.base = base
|
100 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
101 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
102 |
-
|
103 |
-
|
104 |
-
self.
|
105 |
-
|
106 |
-
)
|
107 |
-
|
108 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
109 |
-
self.max_seq_len_cached = seq_len
|
110 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
111 |
-
|
112 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
113 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
114 |
emb = torch.cat((freqs, freqs), dim=-1)
|
115 |
-
self.register_buffer("
|
116 |
-
self.register_buffer("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
return (
|
124 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
125 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
126 |
-
)
|
127 |
|
128 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Aquila
|
129 |
class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
|
130 |
"""AquilaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
131 |
|
132 |
-
def
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
137 |
-
self.max_seq_len_cached = seq_len
|
138 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
139 |
-
t = t / self.scaling_factor
|
140 |
|
141 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
142 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
143 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
144 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
145 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
146 |
-
|
147 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Aquila
|
148 |
class AquilaDynamicNTKScalingRotaryEmbedding(AquilaRotaryEmbedding):
|
149 |
"""AquilaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
150 |
|
151 |
-
def
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
-
self.max_seq_len_cached = seq_len
|
157 |
-
|
158 |
if seq_len > self.max_position_embeddings:
|
159 |
base = self.base * (
|
160 |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
161 |
) ** (self.dim / (self.dim - 2))
|
162 |
-
inv_freq = 1.0 / (
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
170 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
171 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
172 |
|
173 |
|
174 |
def rotate_half(x):
|
@@ -178,18 +183,33 @@ def rotate_half(x):
|
|
178 |
return torch.cat((-x2, x1), dim=-1)
|
179 |
|
180 |
|
181 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
188 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
189 |
return q_embed, k_embed
|
190 |
|
191 |
|
192 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
|
193 |
class AquilaMLP(nn.Module):
|
194 |
def __init__(self, config):
|
195 |
super().__init__()
|
@@ -236,12 +256,21 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
236 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
237 |
|
238 |
|
239 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
|
240 |
class AquilaAttention(nn.Module):
|
241 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
242 |
-
|
|
|
243 |
super().__init__()
|
244 |
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
self.hidden_size = config.hidden_size
|
246 |
self.num_heads = config.num_attention_heads
|
247 |
self.head_dim = self.hidden_size // self.num_heads
|
@@ -249,16 +278,18 @@ class AquilaAttention(nn.Module):
|
|
249 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
250 |
self.max_position_embeddings = config.max_position_embeddings
|
251 |
self.rope_theta = config.rope_theta
|
|
|
252 |
|
253 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
254 |
raise ValueError(
|
255 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
256 |
f" and `num_heads`: {self.num_heads})."
|
257 |
)
|
258 |
-
|
259 |
-
self.
|
260 |
-
self.
|
261 |
-
self.
|
|
|
262 |
self._init_rope()
|
263 |
|
264 |
def _init_rope(self):
|
@@ -288,17 +319,16 @@ class AquilaAttention(nn.Module):
|
|
288 |
else:
|
289 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
290 |
|
291 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
292 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
293 |
-
|
294 |
def forward(
|
295 |
self,
|
296 |
hidden_states: torch.Tensor,
|
297 |
attention_mask: Optional[torch.Tensor] = None,
|
298 |
position_ids: Optional[torch.LongTensor] = None,
|
299 |
-
past_key_value: Optional[
|
300 |
output_attentions: bool = False,
|
301 |
use_cache: bool = False,
|
|
|
|
|
302 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
303 |
bsz, q_len, _ = hidden_states.size()
|
304 |
|
@@ -328,40 +358,27 @@ class AquilaAttention(nn.Module):
|
|
328 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
329 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
335 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
336 |
|
337 |
if past_key_value is not None:
|
338 |
-
#
|
339 |
-
|
340 |
-
value_states =
|
341 |
|
342 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
343 |
-
|
344 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
345 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
346 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
347 |
|
348 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
349 |
-
attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
|
350 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
351 |
-
raise ValueError(
|
352 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
353 |
-
f" {attn_weights.size()}"
|
354 |
-
)
|
355 |
|
356 |
-
if attention_mask is not None:
|
357 |
-
|
358 |
-
|
359 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
360 |
-
)
|
361 |
-
attn_weights = attn_weights + attention_mask
|
362 |
|
363 |
# upcast attention to fp32
|
364 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
365 |
attn_output = torch.matmul(attn_weights, value_states)
|
366 |
|
367 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
@@ -371,6 +388,7 @@ class AquilaAttention(nn.Module):
|
|
371 |
)
|
372 |
|
373 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
374 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
375 |
|
376 |
if self.config.pretraining_tp > 1:
|
@@ -386,12 +404,301 @@ class AquilaAttention(nn.Module):
|
|
386 |
return attn_output, attn_weights, past_key_value
|
387 |
|
388 |
|
389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
class AquilaDecoderLayer(nn.Module):
|
391 |
-
def __init__(self, config: AquilaConfig):
|
392 |
super().__init__()
|
393 |
self.hidden_size = config.hidden_size
|
394 |
-
|
|
|
|
|
395 |
self.mlp = AquilaMLP(config)
|
396 |
self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
397 |
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -404,12 +711,15 @@ class AquilaDecoderLayer(nn.Module):
|
|
404 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
405 |
output_attentions: Optional[bool] = False,
|
406 |
use_cache: Optional[bool] = False,
|
|
|
|
|
407 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
408 |
"""
|
409 |
Args:
|
410 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
411 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
412 |
-
`(
|
|
|
413 |
output_attentions (`bool`, *optional*):
|
414 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
415 |
returned tensors for more detail.
|
@@ -418,6 +728,10 @@ class AquilaDecoderLayer(nn.Module):
|
|
418 |
(see `past_key_values`).
|
419 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
420 |
"""
|
|
|
|
|
|
|
|
|
421 |
|
422 |
residual = hidden_states
|
423 |
|
@@ -431,6 +745,8 @@ class AquilaDecoderLayer(nn.Module):
|
|
431 |
past_key_value=past_key_value,
|
432 |
output_attentions=output_attentions,
|
433 |
use_cache=use_cache,
|
|
|
|
|
434 |
)
|
435 |
hidden_states = residual + hidden_states
|
436 |
|
@@ -450,6 +766,7 @@ class AquilaDecoderLayer(nn.Module):
|
|
450 |
|
451 |
return outputs
|
452 |
|
|
|
453 |
AQUILA_START_DOCSTRING = r"""
|
454 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
455 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
@@ -471,13 +788,15 @@ AQUILA_START_DOCSTRING = r"""
|
|
471 |
"The bare Aquila Model outputting raw hidden-states without any specific head on top.",
|
472 |
AQUILA_START_DOCSTRING,
|
473 |
)
|
474 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Aquila
|
475 |
class AquilaPreTrainedModel(PreTrainedModel):
|
476 |
config_class = AquilaConfig
|
477 |
base_model_prefix = "model"
|
478 |
supports_gradient_checkpointing = True
|
479 |
_no_split_modules = ["AquilaDecoderLayer"]
|
480 |
-
_skip_keys_device_placement = "past_key_values"
|
|
|
|
|
|
|
481 |
|
482 |
def _init_weights(self, module):
|
483 |
std = self.config.initializer_range
|
@@ -490,9 +809,26 @@ class AquilaPreTrainedModel(PreTrainedModel):
|
|
490 |
if module.padding_idx is not None:
|
491 |
module.weight.data[module.padding_idx].zero_()
|
492 |
|
493 |
-
def
|
494 |
-
if
|
495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
|
497 |
|
498 |
AQUILA_INPUTS_DOCSTRING = r"""
|
@@ -516,7 +852,7 @@ AQUILA_INPUTS_DOCSTRING = r"""
|
|
516 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
517 |
[`PreTrainedTokenizer.__call__`] for details.
|
518 |
|
519 |
-
If `past_key_values` is used, optionally only the last `
|
520 |
`past_key_values`).
|
521 |
|
522 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
@@ -530,17 +866,23 @@ AQUILA_INPUTS_DOCSTRING = r"""
|
|
530 |
config.n_positions - 1]`.
|
531 |
|
532 |
[What are position IDs?](../glossary#position-ids)
|
533 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
545 |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
546 |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
@@ -556,6 +898,10 @@ AQUILA_INPUTS_DOCSTRING = r"""
|
|
556 |
more detail.
|
557 |
return_dict (`bool`, *optional*):
|
558 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
|
|
|
|
559 |
"""
|
560 |
|
561 |
|
@@ -563,7 +909,6 @@ AQUILA_INPUTS_DOCSTRING = r"""
|
|
563 |
"The bare Aquila Model outputting raw hidden-states without any specific head on top.",
|
564 |
AQUILA_START_DOCSTRING,
|
565 |
)
|
566 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->AQUILA,Llama->Aquila
|
567 |
class AquilaModel(AquilaPreTrainedModel):
|
568 |
"""
|
569 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
|
@@ -578,10 +923,12 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
578 |
self.vocab_size = config.vocab_size
|
579 |
|
580 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
581 |
-
self.layers = nn.ModuleList(
|
|
|
|
|
582 |
self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
583 |
-
|
584 |
self.gradient_checkpointing = False
|
|
|
585 |
# Initialize weights and apply final processing
|
586 |
self.post_init()
|
587 |
|
@@ -591,29 +938,6 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
591 |
def set_input_embeddings(self, value):
|
592 |
self.embed_tokens = value
|
593 |
|
594 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
595 |
-
# create causal mask
|
596 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
597 |
-
combined_attention_mask = None
|
598 |
-
if input_shape[-1] > 1:
|
599 |
-
combined_attention_mask = _make_causal_mask(
|
600 |
-
input_shape,
|
601 |
-
inputs_embeds.dtype,
|
602 |
-
device=inputs_embeds.device,
|
603 |
-
past_key_values_length=past_key_values_length,
|
604 |
-
)
|
605 |
-
|
606 |
-
if attention_mask is not None:
|
607 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
608 |
-
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
609 |
-
inputs_embeds.device
|
610 |
-
)
|
611 |
-
combined_attention_mask = (
|
612 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
613 |
-
)
|
614 |
-
|
615 |
-
return combined_attention_mask
|
616 |
-
|
617 |
@add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
|
618 |
def forward(
|
619 |
self,
|
@@ -626,101 +950,85 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
626 |
output_attentions: Optional[bool] = None,
|
627 |
output_hidden_states: Optional[bool] = None,
|
628 |
return_dict: Optional[bool] = None,
|
|
|
629 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
630 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
631 |
output_hidden_states = (
|
632 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
633 |
)
|
634 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
635 |
-
|
636 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
637 |
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
batch_size, seq_length = input_ids.shape
|
643 |
-
elif inputs_embeds is not None:
|
644 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
645 |
-
else:
|
646 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
647 |
-
|
648 |
-
seq_length_with_past = seq_length
|
649 |
-
past_key_values_length = 0
|
650 |
-
|
651 |
-
if past_key_values is not None:
|
652 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
653 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
654 |
|
655 |
-
if
|
656 |
-
|
657 |
-
|
658 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
659 |
)
|
660 |
-
|
661 |
-
else:
|
662 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
663 |
|
664 |
if inputs_embeds is None:
|
665 |
inputs_embeds = self.embed_tokens(input_ids)
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
)
|
671 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
672 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
673 |
-
)
|
674 |
|
675 |
-
|
|
|
676 |
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
)
|
682 |
-
use_cache = False
|
683 |
|
684 |
# decoder layers
|
685 |
all_hidden_states = () if output_hidden_states else None
|
686 |
all_self_attns = () if output_attentions else None
|
687 |
-
next_decoder_cache =
|
688 |
|
689 |
-
for
|
690 |
if output_hidden_states:
|
691 |
all_hidden_states += (hidden_states,)
|
692 |
|
693 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
694 |
-
|
695 |
if self.gradient_checkpointing and self.training:
|
696 |
-
|
697 |
-
|
698 |
-
def custom_forward(*inputs):
|
699 |
-
# None for past_key_value
|
700 |
-
return module(*inputs, past_key_value, output_attentions)
|
701 |
-
|
702 |
-
return custom_forward
|
703 |
-
|
704 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
705 |
-
create_custom_forward(decoder_layer),
|
706 |
hidden_states,
|
707 |
-
|
708 |
position_ids,
|
|
|
|
|
|
|
|
|
709 |
)
|
710 |
else:
|
711 |
layer_outputs = decoder_layer(
|
712 |
hidden_states,
|
713 |
-
attention_mask=
|
714 |
position_ids=position_ids,
|
715 |
-
past_key_value=
|
716 |
output_attentions=output_attentions,
|
717 |
use_cache=use_cache,
|
|
|
718 |
)
|
719 |
|
720 |
hidden_states = layer_outputs[0]
|
721 |
|
722 |
if use_cache:
|
723 |
-
next_decoder_cache
|
724 |
|
725 |
if output_attentions:
|
726 |
all_self_attns += (layer_outputs[1],)
|
@@ -731,7 +1039,11 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
731 |
if output_hidden_states:
|
732 |
all_hidden_states += (hidden_states,)
|
733 |
|
734 |
-
next_cache =
|
|
|
|
|
|
|
|
|
735 |
if not return_dict:
|
736 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
737 |
return BaseModelOutputWithPast(
|
@@ -741,7 +1053,70 @@ class AquilaModel(AquilaPreTrainedModel):
|
|
741 |
attentions=all_self_attns,
|
742 |
)
|
743 |
|
744 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
class AquilaForCausalLM(AquilaPreTrainedModel):
|
746 |
_tied_weights_keys = ["lm_head.weight"]
|
747 |
|
@@ -786,6 +1161,7 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
786 |
output_attentions: Optional[bool] = None,
|
787 |
output_hidden_states: Optional[bool] = None,
|
788 |
return_dict: Optional[bool] = None,
|
|
|
789 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
790 |
r"""
|
791 |
Args:
|
@@ -801,18 +1177,17 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
801 |
```python
|
802 |
>>> from transformers import AutoTokenizer, AquilaForCausalLM
|
803 |
|
804 |
-
>>> model = AquilaForCausalLM.from_pretrained(
|
805 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
806 |
|
807 |
-
>>> prompt = "Hey, are you
|
808 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
809 |
|
810 |
>>> # Generate
|
811 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
812 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
813 |
-
"Hey, are you
|
814 |
```"""
|
815 |
-
|
816 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
817 |
output_hidden_states = (
|
818 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -830,6 +1205,7 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
830 |
output_attentions=output_attentions,
|
831 |
output_hidden_states=output_hidden_states,
|
832 |
return_dict=return_dict,
|
|
|
833 |
)
|
834 |
|
835 |
hidden_states = outputs[0]
|
@@ -867,10 +1243,49 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
867 |
)
|
868 |
|
869 |
def prepare_inputs_for_generation(
|
870 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
871 |
):
|
872 |
-
|
873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
874 |
|
875 |
position_ids = kwargs.get("position_ids", None)
|
876 |
if attention_mask is not None and position_ids is None:
|
@@ -878,17 +1293,30 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
878 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
879 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
880 |
if past_key_values:
|
881 |
-
position_ids = position_ids[:, -1]
|
882 |
|
883 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
884 |
if inputs_embeds is not None and past_key_values is None:
|
885 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
886 |
else:
|
887 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
888 |
|
889 |
model_inputs.update(
|
890 |
{
|
891 |
"position_ids": position_ids,
|
|
|
892 |
"past_key_values": past_key_values,
|
893 |
"use_cache": kwargs.get("use_cache"),
|
894 |
"attention_mask": attention_mask,
|
@@ -905,9 +1333,10 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
905 |
)
|
906 |
return reordered_past
|
907 |
|
|
|
908 |
@add_start_docstrings(
|
909 |
"""
|
910 |
-
The
|
911 |
|
912 |
[`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
913 |
(e.g. GPT-2) do.
|
@@ -920,10 +1349,7 @@ class AquilaForCausalLM(AquilaPreTrainedModel):
|
|
920 |
""",
|
921 |
AQUILA_START_DOCSTRING,
|
922 |
)
|
923 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->AQUILA,Llama->Aquila
|
924 |
class AquilaForSequenceClassification(AquilaPreTrainedModel):
|
925 |
-
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
926 |
-
|
927 |
def __init__(self, config):
|
928 |
super().__init__(config)
|
929 |
self.num_labels = config.num_labels
|
@@ -986,9 +1412,10 @@ class AquilaForSequenceClassification(AquilaPreTrainedModel):
|
|
986 |
sequence_lengths = -1
|
987 |
else:
|
988 |
if input_ids is not None:
|
989 |
-
|
990 |
-
|
991 |
-
|
|
|
992 |
else:
|
993 |
sequence_lengths = -1
|
994 |
|
@@ -1028,3 +1455,102 @@ class AquilaForSequenceClassification(AquilaPreTrainedModel):
|
|
1028 |
hidden_states=transformer_outputs.hidden_states,
|
1029 |
attentions=transformer_outputs.attentions,
|
1030 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
# and OPT implementations in this library. It has been modified from its
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
+
|
21 |
+
# Most of the source code is adapted from Llama's source code
|
22 |
+
"""PyTorch Aquila model."""
|
23 |
+
|
24 |
import math
|
25 |
+
import warnings
|
26 |
from typing import List, Optional, Tuple, Union
|
27 |
|
28 |
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
import torch.utils.checkpoint
|
31 |
from torch import nn
|
32 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
|
34 |
from transformers.activations import ACT2FN
|
35 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
36 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
37 |
+
from transformers.modeling_outputs import (
|
38 |
+
BaseModelOutputWithPast,
|
39 |
+
CausalLMOutputWithPast,
|
40 |
+
QuestionAnsweringModelOutput,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
45 |
+
from transformers.utils import (
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
is_flash_attn_2_available,
|
49 |
+
is_flash_attn_greater_or_equal_2_10,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
)
|
53 |
from .configuration_aquila import AquilaConfig
|
54 |
|
55 |
|
56 |
+
if is_flash_attn_2_available():
|
57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
+
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
_CONFIG_FOR_DOC = "AquilaConfig"
|
64 |
|
|
|
65 |
|
66 |
+
def _get_unpad_data(attention_mask):
|
67 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
68 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
69 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
70 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
71 |
+
return (
|
72 |
+
indices,
|
73 |
+
cu_seqlens,
|
74 |
+
max_seqlen_in_batch,
|
75 |
+
)
|
76 |
|
77 |
|
|
|
78 |
class AquilaRMSNorm(nn.Module):
|
79 |
def __init__(self, hidden_size, eps=1e-6):
|
80 |
"""
|
|
|
86 |
|
87 |
def forward(self, hidden_states):
|
88 |
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
|
|
|
94 |
|
95 |
+
ALL_LAYERNORM_LAYERS.append(AquilaRMSNorm)
|
96 |
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
class AquilaRotaryEmbedding(nn.Module):
|
99 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
100 |
+
super().__init__()
|
101 |
+
self.scaling_factor = scaling_factor
|
102 |
self.dim = dim
|
103 |
self.max_position_embeddings = max_position_embeddings
|
104 |
self.base = base
|
105 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
106 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
107 |
+
# For BC we register cos and sin cached
|
108 |
+
self.max_seq_len_cached = max_position_embeddings
|
109 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
110 |
+
t = t / self.scaling_factor
|
111 |
+
freqs = torch.outer(t, self.inv_freq)
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
113 |
emb = torch.cat((freqs, freqs), dim=-1)
|
114 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
115 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
116 |
+
|
117 |
+
@property
|
118 |
+
def sin_cached(self):
|
119 |
+
logger.warning_once(
|
120 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
121 |
+
"the forward method of RoPE from now on instead. It is not used in the `AquilaAttention` class"
|
122 |
+
)
|
123 |
+
return self._sin_cached
|
124 |
|
125 |
+
@property
|
126 |
+
def cos_cached(self):
|
127 |
+
logger.warning_once(
|
128 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
129 |
+
"the forward method of RoPE from now on instead. It is not used in the `AquilaAttention` class"
|
130 |
+
)
|
131 |
+
return self._cos_cached
|
132 |
+
|
133 |
+
@torch.no_grad()
|
134 |
+
def forward(self, x, position_ids):
|
135 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
136 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
137 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
138 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
139 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
140 |
+
device_type = x.device.type
|
141 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
142 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
143 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
144 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
145 |
+
cos = emb.cos()
|
146 |
+
sin = emb.sin()
|
147 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
148 |
|
|
|
|
|
|
|
|
|
149 |
|
|
|
150 |
class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
|
151 |
"""AquilaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
152 |
|
153 |
+
def forward(self, x, position_ids):
|
154 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
155 |
+
position_ids = position_ids.float() / self.scaling_factor
|
156 |
+
cos, sin = super().forward(x, position_ids)
|
157 |
+
return cos, sin
|
158 |
|
|
|
|
|
|
|
|
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
class AquilaDynamicNTKScalingRotaryEmbedding(AquilaRotaryEmbedding):
|
161 |
"""AquilaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
162 |
|
163 |
+
def forward(self, x, position_ids):
|
164 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
165 |
+
seq_len = torch.max(position_ids) + 1
|
|
|
|
|
|
|
|
|
166 |
if seq_len > self.max_position_embeddings:
|
167 |
base = self.base * (
|
168 |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
169 |
) ** (self.dim / (self.dim - 2))
|
170 |
+
inv_freq = 1.0 / (
|
171 |
+
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
172 |
+
)
|
173 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
174 |
|
175 |
+
cos, sin = super().forward(x, position_ids)
|
176 |
+
return cos, sin
|
|
|
|
|
|
|
177 |
|
178 |
|
179 |
def rotate_half(x):
|
|
|
183 |
return torch.cat((-x2, x1), dim=-1)
|
184 |
|
185 |
|
186 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
187 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
q (`torch.Tensor`): The query tensor.
|
191 |
+
k (`torch.Tensor`): The key tensor.
|
192 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
193 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
194 |
+
position_ids (`torch.Tensor`, *optional*):
|
195 |
+
Deprecated and unused.
|
196 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
197 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
198 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
199 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
200 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
201 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
202 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
203 |
+
Returns:
|
204 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
205 |
+
"""
|
206 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
207 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
208 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
209 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
210 |
return q_embed, k_embed
|
211 |
|
212 |
|
|
|
213 |
class AquilaMLP(nn.Module):
|
214 |
def __init__(self, config):
|
215 |
super().__init__()
|
|
|
256 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
257 |
|
258 |
|
|
|
259 |
class AquilaAttention(nn.Module):
|
260 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
261 |
+
|
262 |
+
def __init__(self, config: AquilaConfig, layer_idx: Optional[int] = None):
|
263 |
super().__init__()
|
264 |
self.config = config
|
265 |
+
self.layer_idx = layer_idx
|
266 |
+
if layer_idx is None:
|
267 |
+
logger.warning_once(
|
268 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
269 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
270 |
+
"when creating this class."
|
271 |
+
)
|
272 |
+
|
273 |
+
self.attention_dropout = config.attention_dropout
|
274 |
self.hidden_size = config.hidden_size
|
275 |
self.num_heads = config.num_attention_heads
|
276 |
self.head_dim = self.hidden_size // self.num_heads
|
|
|
278 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
279 |
self.max_position_embeddings = config.max_position_embeddings
|
280 |
self.rope_theta = config.rope_theta
|
281 |
+
self.is_causal = True
|
282 |
|
283 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
284 |
raise ValueError(
|
285 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
286 |
f" and `num_heads`: {self.num_heads})."
|
287 |
)
|
288 |
+
|
289 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
290 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
291 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
292 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
293 |
self._init_rope()
|
294 |
|
295 |
def _init_rope(self):
|
|
|
319 |
else:
|
320 |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
321 |
|
|
|
|
|
|
|
322 |
def forward(
|
323 |
self,
|
324 |
hidden_states: torch.Tensor,
|
325 |
attention_mask: Optional[torch.Tensor] = None,
|
326 |
position_ids: Optional[torch.LongTensor] = None,
|
327 |
+
past_key_value: Optional[Cache] = None,
|
328 |
output_attentions: bool = False,
|
329 |
use_cache: bool = False,
|
330 |
+
cache_position: Optional[torch.LongTensor] = None,
|
331 |
+
**kwargs,
|
332 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
333 |
bsz, q_len, _ = hidden_states.size()
|
334 |
|
|
|
358 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
359 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
360 |
|
361 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
362 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
363 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
|
364 |
|
365 |
if past_key_value is not None:
|
366 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
367 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
368 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
369 |
|
|
|
|
|
|
|
370 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
371 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
372 |
|
373 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
376 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
377 |
+
attn_weights = attn_weights + causal_mask
|
|
|
|
|
|
|
378 |
|
379 |
# upcast attention to fp32
|
380 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
381 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
382 |
attn_output = torch.matmul(attn_weights, value_states)
|
383 |
|
384 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
388 |
)
|
389 |
|
390 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
391 |
+
|
392 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
393 |
|
394 |
if self.config.pretraining_tp > 1:
|
|
|
404 |
return attn_output, attn_weights, past_key_value
|
405 |
|
406 |
|
407 |
+
class AquilaFlashAttention2(AquilaAttention):
|
408 |
+
"""
|
409 |
+
Aquila flash attention module. This module inherits from `AquilaAttention` as the weights of the module stays
|
410 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
411 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
412 |
+
"""
|
413 |
+
|
414 |
+
def __init__(self, *args, **kwargs):
|
415 |
+
super().__init__(*args, **kwargs)
|
416 |
+
|
417 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
418 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
419 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
420 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
421 |
+
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
hidden_states: torch.Tensor,
|
425 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
426 |
+
position_ids: Optional[torch.LongTensor] = None,
|
427 |
+
past_key_value: Optional[Cache] = None,
|
428 |
+
output_attentions: bool = False,
|
429 |
+
use_cache: bool = False,
|
430 |
+
cache_position: Optional[torch.LongTensor] = None,
|
431 |
+
**kwargs,
|
432 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
433 |
+
output_attentions = False
|
434 |
+
|
435 |
+
bsz, q_len, _ = hidden_states.size()
|
436 |
+
|
437 |
+
query_states = self.q_proj(hidden_states)
|
438 |
+
key_states = self.k_proj(hidden_states)
|
439 |
+
value_states = self.v_proj(hidden_states)
|
440 |
+
|
441 |
+
# Flash attention requires the input to have the shape
|
442 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
443 |
+
# therefore we just need to keep the original shape
|
444 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
445 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
446 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
447 |
+
|
448 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
449 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
450 |
+
|
451 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
452 |
+
|
453 |
+
if past_key_value is not None:
|
454 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
455 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
456 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
457 |
+
|
458 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
459 |
+
# to be able to avoid many of these transpose/reshape/view.
|
460 |
+
query_states = query_states.transpose(1, 2)
|
461 |
+
key_states = key_states.transpose(1, 2)
|
462 |
+
value_states = value_states.transpose(1, 2)
|
463 |
+
|
464 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
465 |
+
|
466 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
467 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
468 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
469 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
470 |
+
# in fp32. (AquilaRMSNorm handles it correctly)
|
471 |
+
|
472 |
+
input_dtype = query_states.dtype
|
473 |
+
if input_dtype == torch.float32:
|
474 |
+
if torch.is_autocast_enabled():
|
475 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
476 |
+
# Handle the case where the model is quantized
|
477 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
478 |
+
target_dtype = self.config._pre_quantization_dtype
|
479 |
+
else:
|
480 |
+
target_dtype = self.q_proj.weight.dtype
|
481 |
+
|
482 |
+
logger.warning_once(
|
483 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
484 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
485 |
+
f" {target_dtype}."
|
486 |
+
)
|
487 |
+
|
488 |
+
query_states = query_states.to(target_dtype)
|
489 |
+
key_states = key_states.to(target_dtype)
|
490 |
+
value_states = value_states.to(target_dtype)
|
491 |
+
|
492 |
+
attn_output = self._flash_attention_forward(
|
493 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
494 |
+
)
|
495 |
+
|
496 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
497 |
+
attn_output = self.o_proj(attn_output)
|
498 |
+
|
499 |
+
if not output_attentions:
|
500 |
+
attn_weights = None
|
501 |
+
|
502 |
+
return attn_output, attn_weights, past_key_value
|
503 |
+
|
504 |
+
def _flash_attention_forward(
|
505 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
506 |
+
):
|
507 |
+
"""
|
508 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
509 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
510 |
+
|
511 |
+
Args:
|
512 |
+
query_states (`torch.Tensor`):
|
513 |
+
Input query states to be passed to Flash Attention API
|
514 |
+
key_states (`torch.Tensor`):
|
515 |
+
Input key states to be passed to Flash Attention API
|
516 |
+
value_states (`torch.Tensor`):
|
517 |
+
Input value states to be passed to Flash Attention API
|
518 |
+
attention_mask (`torch.Tensor`):
|
519 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
520 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
521 |
+
dropout (`float`):
|
522 |
+
Attention dropout
|
523 |
+
softmax_scale (`float`, *optional*):
|
524 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
525 |
+
"""
|
526 |
+
if not self._flash_attn_uses_top_left_mask:
|
527 |
+
causal = self.is_causal
|
528 |
+
else:
|
529 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in AquilaFlashAttention2 __init__.
|
530 |
+
causal = self.is_causal and query_length != 1
|
531 |
+
|
532 |
+
# Contains at least one padding token in the sequence
|
533 |
+
if attention_mask is not None:
|
534 |
+
batch_size = query_states.shape[0]
|
535 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
536 |
+
query_states, key_states, value_states, attention_mask, query_length
|
537 |
+
)
|
538 |
+
|
539 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
540 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
541 |
+
|
542 |
+
attn_output_unpad = flash_attn_varlen_func(
|
543 |
+
query_states,
|
544 |
+
key_states,
|
545 |
+
value_states,
|
546 |
+
cu_seqlens_q=cu_seqlens_q,
|
547 |
+
cu_seqlens_k=cu_seqlens_k,
|
548 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
549 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
550 |
+
dropout_p=dropout,
|
551 |
+
softmax_scale=softmax_scale,
|
552 |
+
causal=causal,
|
553 |
+
)
|
554 |
+
|
555 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
556 |
+
else:
|
557 |
+
attn_output = flash_attn_func(
|
558 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
559 |
+
)
|
560 |
+
|
561 |
+
return attn_output
|
562 |
+
|
563 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
564 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
565 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
566 |
+
|
567 |
+
key_layer = index_first_axis(
|
568 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
569 |
+
)
|
570 |
+
value_layer = index_first_axis(
|
571 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
572 |
+
)
|
573 |
+
if query_length == kv_seq_len:
|
574 |
+
query_layer = index_first_axis(
|
575 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
576 |
+
)
|
577 |
+
cu_seqlens_q = cu_seqlens_k
|
578 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
579 |
+
indices_q = indices_k
|
580 |
+
elif query_length == 1:
|
581 |
+
max_seqlen_in_batch_q = 1
|
582 |
+
cu_seqlens_q = torch.arange(
|
583 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
584 |
+
) # There is a memcpy here, that is very bad.
|
585 |
+
indices_q = cu_seqlens_q[:-1]
|
586 |
+
query_layer = query_layer.squeeze(1)
|
587 |
+
else:
|
588 |
+
# The -q_len: slice assumes left padding.
|
589 |
+
attention_mask = attention_mask[:, -query_length:]
|
590 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
591 |
+
|
592 |
+
return (
|
593 |
+
query_layer,
|
594 |
+
key_layer,
|
595 |
+
value_layer,
|
596 |
+
indices_q,
|
597 |
+
(cu_seqlens_q, cu_seqlens_k),
|
598 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
599 |
+
)
|
600 |
+
|
601 |
+
|
602 |
+
class AquilaSdpaAttention(AquilaAttention):
|
603 |
+
"""
|
604 |
+
Aquila attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
605 |
+
`AquilaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
606 |
+
SDPA API.
|
607 |
+
"""
|
608 |
+
|
609 |
+
# Adapted from AquilaAttention.forward
|
610 |
+
def forward(
|
611 |
+
self,
|
612 |
+
hidden_states: torch.Tensor,
|
613 |
+
attention_mask: Optional[torch.Tensor] = None,
|
614 |
+
position_ids: Optional[torch.LongTensor] = None,
|
615 |
+
past_key_value: Optional[Cache] = None,
|
616 |
+
output_attentions: bool = False,
|
617 |
+
use_cache: bool = False,
|
618 |
+
cache_position: Optional[torch.LongTensor] = None,
|
619 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
620 |
+
if output_attentions:
|
621 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
622 |
+
logger.warning_once(
|
623 |
+
"AquilaModel is using AquilaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
624 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
625 |
+
)
|
626 |
+
return super().forward(
|
627 |
+
hidden_states=hidden_states,
|
628 |
+
attention_mask=attention_mask,
|
629 |
+
position_ids=position_ids,
|
630 |
+
past_key_value=past_key_value,
|
631 |
+
output_attentions=output_attentions,
|
632 |
+
use_cache=use_cache,
|
633 |
+
cache_position=cache_position,
|
634 |
+
)
|
635 |
+
|
636 |
+
bsz, q_len, _ = hidden_states.size()
|
637 |
+
|
638 |
+
query_states = self.q_proj(hidden_states)
|
639 |
+
key_states = self.k_proj(hidden_states)
|
640 |
+
value_states = self.v_proj(hidden_states)
|
641 |
+
|
642 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
643 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
644 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
645 |
+
|
646 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
647 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
648 |
+
|
649 |
+
# In case static cache is used, it is an instance attribute.
|
650 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
651 |
+
|
652 |
+
if past_key_value is not None:
|
653 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
654 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
655 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
656 |
+
|
657 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
658 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
659 |
+
|
660 |
+
causal_mask = attention_mask
|
661 |
+
# if attention_mask is not None and cache_position is not None:
|
662 |
+
if attention_mask is not None:
|
663 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
664 |
+
|
665 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
666 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
667 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
668 |
+
query_states = query_states.contiguous()
|
669 |
+
key_states = key_states.contiguous()
|
670 |
+
value_states = value_states.contiguous()
|
671 |
+
|
672 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
673 |
+
query_states,
|
674 |
+
key_states,
|
675 |
+
value_states,
|
676 |
+
attn_mask=causal_mask,
|
677 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
678 |
+
)
|
679 |
+
|
680 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
681 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
682 |
+
|
683 |
+
attn_output = self.o_proj(attn_output)
|
684 |
+
|
685 |
+
return attn_output, None, past_key_value
|
686 |
+
|
687 |
+
|
688 |
+
AQUILA_ATTENTION_CLASSES = {
|
689 |
+
"eager": AquilaAttention,
|
690 |
+
"flash_attention_2": AquilaFlashAttention2,
|
691 |
+
"sdpa": AquilaSdpaAttention,
|
692 |
+
}
|
693 |
+
|
694 |
+
|
695 |
class AquilaDecoderLayer(nn.Module):
|
696 |
+
def __init__(self, config: AquilaConfig, layer_idx: int):
|
697 |
super().__init__()
|
698 |
self.hidden_size = config.hidden_size
|
699 |
+
|
700 |
+
self.self_attn = AQUILA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
701 |
+
|
702 |
self.mlp = AquilaMLP(config)
|
703 |
self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
704 |
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
711 |
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
712 |
output_attentions: Optional[bool] = False,
|
713 |
use_cache: Optional[bool] = False,
|
714 |
+
cache_position: Optional[torch.LongTensor] = None,
|
715 |
+
**kwargs,
|
716 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
717 |
"""
|
718 |
Args:
|
719 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
720 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
721 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
722 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
723 |
output_attentions (`bool`, *optional*):
|
724 |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
725 |
returned tensors for more detail.
|
|
|
728 |
(see `past_key_values`).
|
729 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
730 |
"""
|
731 |
+
if "padding_mask" in kwargs:
|
732 |
+
warnings.warn(
|
733 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
734 |
+
)
|
735 |
|
736 |
residual = hidden_states
|
737 |
|
|
|
745 |
past_key_value=past_key_value,
|
746 |
output_attentions=output_attentions,
|
747 |
use_cache=use_cache,
|
748 |
+
cache_position=cache_position,
|
749 |
+
**kwargs,
|
750 |
)
|
751 |
hidden_states = residual + hidden_states
|
752 |
|
|
|
766 |
|
767 |
return outputs
|
768 |
|
769 |
+
|
770 |
AQUILA_START_DOCSTRING = r"""
|
771 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
772 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
|
788 |
"The bare Aquila Model outputting raw hidden-states without any specific head on top.",
|
789 |
AQUILA_START_DOCSTRING,
|
790 |
)
|
|
|
791 |
class AquilaPreTrainedModel(PreTrainedModel):
|
792 |
config_class = AquilaConfig
|
793 |
base_model_prefix = "model"
|
794 |
supports_gradient_checkpointing = True
|
795 |
_no_split_modules = ["AquilaDecoderLayer"]
|
796 |
+
_skip_keys_device_placement = ["past_key_values"]
|
797 |
+
_supports_flash_attn_2 = True
|
798 |
+
_supports_sdpa = True
|
799 |
+
_supports_cache_class = True
|
800 |
|
801 |
def _init_weights(self, module):
|
802 |
std = self.config.initializer_range
|
|
|
809 |
if module.padding_idx is not None:
|
810 |
module.weight.data[module.padding_idx].zero_()
|
811 |
|
812 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
813 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
814 |
+
raise ValueError(
|
815 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
816 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
817 |
+
)
|
818 |
+
|
819 |
+
for layer in self.model.layers:
|
820 |
+
device = layer.input_layernorm.weight.device
|
821 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
822 |
+
dtype = self.config._pre_quantization_dtype
|
823 |
+
else:
|
824 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
825 |
+
layer.self_attn.past_key_value = cache_cls(
|
826 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
827 |
+
)
|
828 |
+
|
829 |
+
def _reset_cache(self):
|
830 |
+
for layer in self.model.layers:
|
831 |
+
layer.self_attn.past_key_value = None
|
832 |
|
833 |
|
834 |
AQUILA_INPUTS_DOCSTRING = r"""
|
|
|
852 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
853 |
[`PreTrainedTokenizer.__call__`] for details.
|
854 |
|
855 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
856 |
`past_key_values`).
|
857 |
|
858 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
|
866 |
config.n_positions - 1]`.
|
867 |
|
868 |
[What are position IDs?](../glossary#position-ids)
|
869 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
870 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
871 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
872 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
873 |
+
|
874 |
+
Two formats are allowed:
|
875 |
+
- a [`~cache_utils.Cache`] instance;
|
876 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
877 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
878 |
+
cache format.
|
879 |
+
|
880 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
881 |
+
legacy cache format will be returned.
|
882 |
+
|
883 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
884 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
885 |
+
of shape `(batch_size, sequence_length)`.
|
886 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
887 |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
888 |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
|
898 |
more detail.
|
899 |
return_dict (`bool`, *optional*):
|
900 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
901 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
902 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
903 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
904 |
+
the complete sequence length.
|
905 |
"""
|
906 |
|
907 |
|
|
|
909 |
"The bare Aquila Model outputting raw hidden-states without any specific head on top.",
|
910 |
AQUILA_START_DOCSTRING,
|
911 |
)
|
|
|
912 |
class AquilaModel(AquilaPreTrainedModel):
|
913 |
"""
|
914 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
|
|
|
923 |
self.vocab_size = config.vocab_size
|
924 |
|
925 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
926 |
+
self.layers = nn.ModuleList(
|
927 |
+
[AquilaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
928 |
+
)
|
929 |
self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
930 |
self.gradient_checkpointing = False
|
931 |
+
|
932 |
# Initialize weights and apply final processing
|
933 |
self.post_init()
|
934 |
|
|
|
938 |
def set_input_embeddings(self, value):
|
939 |
self.embed_tokens = value
|
940 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
941 |
@add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
|
942 |
def forward(
|
943 |
self,
|
|
|
950 |
output_attentions: Optional[bool] = None,
|
951 |
output_hidden_states: Optional[bool] = None,
|
952 |
return_dict: Optional[bool] = None,
|
953 |
+
cache_position: Optional[torch.LongTensor] = None,
|
954 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
955 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
956 |
output_hidden_states = (
|
957 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
958 |
)
|
959 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
960 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
961 |
|
962 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
963 |
+
raise ValueError(
|
964 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
965 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
966 |
|
967 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
968 |
+
logger.warning_once(
|
969 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
|
970 |
)
|
971 |
+
use_cache = False
|
|
|
|
|
972 |
|
973 |
if inputs_embeds is None:
|
974 |
inputs_embeds = self.embed_tokens(input_ids)
|
975 |
+
|
976 |
+
past_seen_tokens = 0
|
977 |
+
if use_cache: # kept for BC (cache positions)
|
978 |
+
if not isinstance(past_key_values, StaticCache):
|
979 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
980 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
981 |
+
|
982 |
+
if cache_position is None:
|
983 |
+
if isinstance(past_key_values, StaticCache):
|
984 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
985 |
+
cache_position = torch.arange(
|
986 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
987 |
)
|
|
|
|
|
|
|
988 |
|
989 |
+
if position_ids is None:
|
990 |
+
position_ids = cache_position.unsqueeze(0)
|
991 |
|
992 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
993 |
+
|
994 |
+
# embed positions
|
995 |
+
hidden_states = inputs_embeds
|
|
|
|
|
996 |
|
997 |
# decoder layers
|
998 |
all_hidden_states = () if output_hidden_states else None
|
999 |
all_self_attns = () if output_attentions else None
|
1000 |
+
next_decoder_cache = None
|
1001 |
|
1002 |
+
for decoder_layer in self.layers:
|
1003 |
if output_hidden_states:
|
1004 |
all_hidden_states += (hidden_states,)
|
1005 |
|
|
|
|
|
1006 |
if self.gradient_checkpointing and self.training:
|
1007 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1008 |
+
decoder_layer.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1009 |
hidden_states,
|
1010 |
+
causal_mask,
|
1011 |
position_ids,
|
1012 |
+
past_key_values,
|
1013 |
+
output_attentions,
|
1014 |
+
use_cache,
|
1015 |
+
cache_position,
|
1016 |
)
|
1017 |
else:
|
1018 |
layer_outputs = decoder_layer(
|
1019 |
hidden_states,
|
1020 |
+
attention_mask=causal_mask,
|
1021 |
position_ids=position_ids,
|
1022 |
+
past_key_value=past_key_values,
|
1023 |
output_attentions=output_attentions,
|
1024 |
use_cache=use_cache,
|
1025 |
+
cache_position=cache_position,
|
1026 |
)
|
1027 |
|
1028 |
hidden_states = layer_outputs[0]
|
1029 |
|
1030 |
if use_cache:
|
1031 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1032 |
|
1033 |
if output_attentions:
|
1034 |
all_self_attns += (layer_outputs[1],)
|
|
|
1039 |
if output_hidden_states:
|
1040 |
all_hidden_states += (hidden_states,)
|
1041 |
|
1042 |
+
next_cache = None
|
1043 |
+
if use_cache:
|
1044 |
+
next_cache = (
|
1045 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1046 |
+
)
|
1047 |
if not return_dict:
|
1048 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1049 |
return BaseModelOutputWithPast(
|
|
|
1053 |
attentions=all_self_attns,
|
1054 |
)
|
1055 |
|
1056 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1057 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1058 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1059 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1060 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
1061 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1062 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1063 |
+
return attention_mask
|
1064 |
+
return None
|
1065 |
+
|
1066 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1067 |
+
min_dtype = torch.finfo(dtype).min
|
1068 |
+
sequence_length = input_tensor.shape[1]
|
1069 |
+
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
|
1070 |
+
target_length = self.config.max_position_embeddings
|
1071 |
+
else: # dynamic cache
|
1072 |
+
target_length = (
|
1073 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1077 |
+
if sequence_length != 1:
|
1078 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1079 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1080 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1081 |
+
if attention_mask is not None:
|
1082 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1083 |
+
if attention_mask.dim() == 2:
|
1084 |
+
mask_length = attention_mask.shape[-1]
|
1085 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1086 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1087 |
+
elif attention_mask.dim() == 4:
|
1088 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1089 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1090 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1091 |
+
offset = cache_position[0]
|
1092 |
+
else:
|
1093 |
+
offset = 0
|
1094 |
+
mask_shape = attention_mask.shape
|
1095 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1096 |
+
causal_mask[
|
1097 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1098 |
+
] = mask_slice
|
1099 |
+
|
1100 |
+
if (
|
1101 |
+
self.config._attn_implementation == "sdpa"
|
1102 |
+
and attention_mask is not None
|
1103 |
+
and attention_mask.device.type == "cuda"
|
1104 |
+
):
|
1105 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1106 |
+
is_tracing = (
|
1107 |
+
torch.jit.is_tracing()
|
1108 |
+
or isinstance(input_tensor, torch.fx.Proxy)
|
1109 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1110 |
+
)
|
1111 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1112 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1113 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1114 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1115 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1116 |
+
|
1117 |
+
return causal_mask
|
1118 |
+
|
1119 |
+
|
1120 |
class AquilaForCausalLM(AquilaPreTrainedModel):
|
1121 |
_tied_weights_keys = ["lm_head.weight"]
|
1122 |
|
|
|
1161 |
output_attentions: Optional[bool] = None,
|
1162 |
output_hidden_states: Optional[bool] = None,
|
1163 |
return_dict: Optional[bool] = None,
|
1164 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1165 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1166 |
r"""
|
1167 |
Args:
|
|
|
1177 |
```python
|
1178 |
>>> from transformers import AutoTokenizer, AquilaForCausalLM
|
1179 |
|
1180 |
+
>>> model = AquilaForCausalLM.from_pretrained("BAAI/Aquila2-7B")
|
1181 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("BAAI/Aquila2-7B")
|
1182 |
|
1183 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1184 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1185 |
|
1186 |
>>> # Generate
|
1187 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1188 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1189 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1190 |
```"""
|
|
|
1191 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1192 |
output_hidden_states = (
|
1193 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
1205 |
output_attentions=output_attentions,
|
1206 |
output_hidden_states=output_hidden_states,
|
1207 |
return_dict=return_dict,
|
1208 |
+
cache_position=cache_position,
|
1209 |
)
|
1210 |
|
1211 |
hidden_states = outputs[0]
|
|
|
1243 |
)
|
1244 |
|
1245 |
def prepare_inputs_for_generation(
|
1246 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1247 |
):
|
1248 |
+
# With static cache, the `past_key_values` is None
|
1249 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1250 |
+
has_static_cache = False
|
1251 |
+
if past_key_values is None:
|
1252 |
+
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1253 |
+
has_static_cache = past_key_values is not None
|
1254 |
+
|
1255 |
+
past_length = 0
|
1256 |
+
if past_key_values is not None:
|
1257 |
+
if isinstance(past_key_values, Cache):
|
1258 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1259 |
+
max_cache_length = (
|
1260 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1261 |
+
if past_key_values.get_max_length() is not None
|
1262 |
+
else None
|
1263 |
+
)
|
1264 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1265 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1266 |
+
else:
|
1267 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1268 |
+
max_cache_length = None
|
1269 |
+
|
1270 |
+
# Keep only the unprocessed tokens:
|
1271 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1272 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1273 |
+
# input)
|
1274 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1275 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1276 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1277 |
+
# input_ids based on the past_length.
|
1278 |
+
elif past_length < input_ids.shape[1]:
|
1279 |
+
input_ids = input_ids[:, past_length:]
|
1280 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1281 |
+
|
1282 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1283 |
+
if (
|
1284 |
+
max_cache_length is not None
|
1285 |
+
and attention_mask is not None
|
1286 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1287 |
+
):
|
1288 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1289 |
|
1290 |
position_ids = kwargs.get("position_ids", None)
|
1291 |
if attention_mask is not None and position_ids is None:
|
|
|
1293 |
position_ids = attention_mask.long().cumsum(-1) - 1
|
1294 |
position_ids.masked_fill_(attention_mask == 0, 1)
|
1295 |
if past_key_values:
|
1296 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1297 |
|
1298 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1299 |
if inputs_embeds is not None and past_key_values is None:
|
1300 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
1301 |
else:
|
1302 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1303 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1304 |
+
# TODO: use `next_tokens` directly instead.
|
1305 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1306 |
+
|
1307 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1308 |
+
if cache_position is None:
|
1309 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1310 |
+
else:
|
1311 |
+
cache_position = cache_position[-input_length:]
|
1312 |
+
|
1313 |
+
if has_static_cache:
|
1314 |
+
past_key_values = None
|
1315 |
|
1316 |
model_inputs.update(
|
1317 |
{
|
1318 |
"position_ids": position_ids,
|
1319 |
+
"cache_position": cache_position,
|
1320 |
"past_key_values": past_key_values,
|
1321 |
"use_cache": kwargs.get("use_cache"),
|
1322 |
"attention_mask": attention_mask,
|
|
|
1333 |
)
|
1334 |
return reordered_past
|
1335 |
|
1336 |
+
|
1337 |
@add_start_docstrings(
|
1338 |
"""
|
1339 |
+
The Aquila Model transformer with a sequence classification head on top (linear layer).
|
1340 |
|
1341 |
[`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1342 |
(e.g. GPT-2) do.
|
|
|
1349 |
""",
|
1350 |
AQUILA_START_DOCSTRING,
|
1351 |
)
|
|
|
1352 |
class AquilaForSequenceClassification(AquilaPreTrainedModel):
|
|
|
|
|
1353 |
def __init__(self, config):
|
1354 |
super().__init__(config)
|
1355 |
self.num_labels = config.num_labels
|
|
|
1412 |
sequence_lengths = -1
|
1413 |
else:
|
1414 |
if input_ids is not None:
|
1415 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1416 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1417 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1418 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1419 |
else:
|
1420 |
sequence_lengths = -1
|
1421 |
|
|
|
1455 |
hidden_states=transformer_outputs.hidden_states,
|
1456 |
attentions=transformer_outputs.attentions,
|
1457 |
)
|
1458 |
+
|
1459 |
+
|
1460 |
+
@add_start_docstrings(
|
1461 |
+
"""
|
1462 |
+
The Aquila Model transformer with a span classification head on top for extractive question-answering tasks like
|
1463 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1464 |
+
""",
|
1465 |
+
AQUILA_START_DOCSTRING,
|
1466 |
+
)
|
1467 |
+
class AquilaForQuestionAnswering(AquilaPreTrainedModel):
|
1468 |
+
base_model_prefix = "transformer"
|
1469 |
+
|
1470 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Aquila
|
1471 |
+
def __init__(self, config):
|
1472 |
+
super().__init__(config)
|
1473 |
+
self.transformer = AquilaModel(config)
|
1474 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1475 |
+
|
1476 |
+
# Initialize weights and apply final processing
|
1477 |
+
self.post_init()
|
1478 |
+
|
1479 |
+
def get_input_embeddings(self):
|
1480 |
+
return self.transformer.embed_tokens
|
1481 |
+
|
1482 |
+
def set_input_embeddings(self, value):
|
1483 |
+
self.transformer.embed_tokens = value
|
1484 |
+
|
1485 |
+
@add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
|
1486 |
+
def forward(
|
1487 |
+
self,
|
1488 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1489 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1490 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1491 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1492 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1493 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1494 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1495 |
+
output_attentions: Optional[bool] = None,
|
1496 |
+
output_hidden_states: Optional[bool] = None,
|
1497 |
+
return_dict: Optional[bool] = None,
|
1498 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1499 |
+
r"""
|
1500 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1501 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1502 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1503 |
+
are not taken into account for computing the loss.
|
1504 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1505 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1506 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1507 |
+
are not taken into account for computing the loss.
|
1508 |
+
"""
|
1509 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1510 |
+
|
1511 |
+
outputs = self.transformer(
|
1512 |
+
input_ids,
|
1513 |
+
attention_mask=attention_mask,
|
1514 |
+
position_ids=position_ids,
|
1515 |
+
past_key_values=past_key_values,
|
1516 |
+
inputs_embeds=inputs_embeds,
|
1517 |
+
output_attentions=output_attentions,
|
1518 |
+
output_hidden_states=output_hidden_states,
|
1519 |
+
return_dict=return_dict,
|
1520 |
+
)
|
1521 |
+
|
1522 |
+
sequence_output = outputs[0]
|
1523 |
+
|
1524 |
+
logits = self.qa_outputs(sequence_output)
|
1525 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1526 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1527 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1528 |
+
|
1529 |
+
total_loss = None
|
1530 |
+
if start_positions is not None and end_positions is not None:
|
1531 |
+
# If we are on multi-GPU, split add a dimension
|
1532 |
+
if len(start_positions.size()) > 1:
|
1533 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1534 |
+
if len(end_positions.size()) > 1:
|
1535 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1536 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1537 |
+
ignored_index = start_logits.size(1)
|
1538 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1539 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1540 |
+
|
1541 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1542 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1543 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1544 |
+
total_loss = (start_loss + end_loss) / 2
|
1545 |
+
|
1546 |
+
if not return_dict:
|
1547 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1548 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1549 |
+
|
1550 |
+
return QuestionAnsweringModelOutput(
|
1551 |
+
loss=total_loss,
|
1552 |
+
start_logits=start_logits,
|
1553 |
+
end_logits=end_logits,
|
1554 |
+
hidden_states=outputs.hidden_states,
|
1555 |
+
attentions=outputs.attentions,
|
1556 |
+
)
|