whisper-small-zh-TW / README.md
B20662's picture
Training in progress, step 1000
124a093 verified
|
raw
history blame
2.28 kB
metadata
library_name: transformers
language:
  - tw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small zh-TW
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: zh-TW
          split: test
          args: 'config: zh-TW, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 40.41197706519431

Whisper Small zh-TW

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2271
  • Wer: 40.4120

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0964 1.4184 1000 0.1998 41.1552
0.0317 2.8369 2000 0.2073 41.5375
0.0049 4.2553 3000 0.2142 40.4757
0.0015 5.6738 4000 0.2238 40.5606
0.0009 7.0922 5000 0.2271 40.4120

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0