metadata
library_name: transformers
language:
- tw
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small zh-TW
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: 'config: zh-TW, split: test'
metrics:
- name: Wer
type: wer
value: 40.41197706519431
Whisper Small zh-TW
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2271
- Wer: 40.4120
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0964 | 1.4184 | 1000 | 0.1998 | 41.1552 |
0.0317 | 2.8369 | 2000 | 0.2073 | 41.5375 |
0.0049 | 4.2553 | 3000 | 0.2142 | 40.4757 |
0.0015 | 5.6738 | 4000 | 0.2238 | 40.5606 |
0.0009 | 7.0922 | 5000 | 0.2271 | 40.4120 |
Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0