Update README.md
Browse filesHola, si lees esto, espero te sirve este trabajo, saludos a OMCaicedo
README.md
CHANGED
|
@@ -6,35 +6,90 @@ tags:
|
|
| 6 |
- base_model:adapter:llama32-3b
|
| 7 |
- lora
|
| 8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
# Model Card for Model ID
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
### Model Description
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
-
|
| 28 |
-
-
|
| 29 |
-
-
|
| 30 |
-
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
### Model Sources [optional]
|
| 34 |
|
| 35 |
<!-- Provide the basic links for the model. -->
|
| 36 |
|
| 37 |
-
- **Repository:**
|
| 38 |
- **Paper [optional]:** [More Information Needed]
|
| 39 |
- **Demo [optional]:** [More Information Needed]
|
| 40 |
|
|
@@ -43,40 +98,116 @@ tags:
|
|
| 43 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
|
| 45 |
### Direct Use
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
### Downstream Use [optional]
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
### Out-of-Scope Use
|
| 58 |
|
|
|
|
|
|
|
| 59 |
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
## Bias, Risks, and Limitations
|
| 64 |
|
| 65 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
### Recommendations
|
| 70 |
|
| 71 |
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
## How to Get Started with the Model
|
| 76 |
|
| 77 |
Use the code below to get started with the model.
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
## Training Details
|
| 82 |
|
|
@@ -84,26 +215,58 @@ Use the code below to get started with the model.
|
|
| 84 |
|
| 85 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
### Training Procedure
|
| 90 |
|
| 91 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
#### Preprocessing [optional]
|
| 94 |
|
| 95 |
-
[More Information Needed]
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
| 98 |
#### Training Hyperparameters
|
| 99 |
|
| 100 |
-
- **Training regime:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
#### Speeds, Sizes, Times [optional]
|
| 103 |
|
| 104 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
## Evaluation
|
| 109 |
|
|
@@ -115,7 +278,15 @@ Use the code below to get started with the model.
|
|
| 115 |
|
| 116 |
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
#### Factors
|
| 121 |
|
|
@@ -131,11 +302,27 @@ Use the code below to get started with the model.
|
|
| 131 |
|
| 132 |
### Results
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
#### Summary
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
## Model Examination [optional]
|
| 141 |
|
|
@@ -149,17 +336,20 @@ Use the code below to get started with the model.
|
|
| 149 |
|
| 150 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
|
| 152 |
-
- **Hardware Type:**
|
| 153 |
-
- **Hours used:**
|
| 154 |
-
- **Cloud Provider:**
|
| 155 |
- **Compute Region:** [More Information Needed]
|
| 156 |
-
- **Carbon Emitted:**
|
| 157 |
|
| 158 |
## Technical Specifications [optional]
|
| 159 |
|
| 160 |
### Model Architecture and Objective
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
### Compute Infrastructure
|
| 165 |
|
|
@@ -167,7 +357,12 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
| 167 |
|
| 168 |
#### Hardware
|
| 169 |
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
#### Software
|
| 173 |
|
|
@@ -193,15 +388,18 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
| 193 |
|
| 194 |
## More Information [optional]
|
| 195 |
|
| 196 |
-
|
| 197 |
|
| 198 |
## Model Card Authors [optional]
|
| 199 |
|
| 200 |
-
|
|
|
|
| 201 |
|
| 202 |
## Model Card Contact
|
| 203 |
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
### Framework versions
|
| 206 |
|
| 207 |
-
- PEFT 0.18.0
|
|
|
|
| 6 |
- base_model:adapter:llama32-3b
|
| 7 |
- lora
|
| 8 |
- transformers
|
| 9 |
+
- network-automation
|
| 10 |
+
- cisco
|
| 11 |
+
license: llama3.2
|
| 12 |
+
language:
|
| 13 |
+
- es
|
| 14 |
---
|
| 15 |
|
| 16 |
# Model Card for Model ID
|
| 17 |
+
All translatios were done in DeepL.com (free version)
|
| 18 |
+
EN:
|
| 19 |
+
This model is an LLM specialized in Cisco network configuration, fine-tuned with 4-bit LoRA on a LLaMA 3.2 3B base, focused on:
|
| 20 |
|
| 21 |
+
- Interface configuration
|
| 22 |
+
- VLAN configuration
|
| 23 |
+
- DHCP configuration
|
| 24 |
+
- Technical responses for OSPF, NAT, ACL, DNS, BGP (text mode)
|
| 25 |
|
| 26 |
+
In addition, it was designed to integrate with agents that use network automation tools. Developed as a project for the Recent Topics in Networking course at the University of Cauca, it was trained with an artificially generated dataset.
|
| 27 |
+
The model was trained on a dataset of 10,000 examples, with 10,000 examples of training data and 10,000 examples of test data.
|
| 28 |
+
|
| 29 |
+
ES:
|
| 30 |
+
|
| 31 |
+
Este modelo es un LLM especializado en configuración de redes Cisco, ajustado mediante fine-tuning con LoRA a 4 bits sobre una base LLaMA 3.2 3B, enfocado en:
|
| 32 |
+
|
| 33 |
+
- Configuración de interfaces
|
| 34 |
+
- Configuración de VLAN
|
| 35 |
+
- Configuración de DHCP
|
| 36 |
+
- Respuestas técnicas para OSPF, NAT, ACL, DNS, BGP (modo textual)
|
| 37 |
+
|
| 38 |
+
Además, fue diseñado para integrarse con agentes que usen herramientas para automatización de red. Desarrollado como proyecto para la materia Recent Topics in netwroking
|
| 39 |
+
de la universidad del cauca, fue entrando con un dataset generado de manera artificial.
|
| 40 |
|
| 41 |
|
| 42 |
## Model Details
|
| 43 |
|
| 44 |
### Model Description
|
| 45 |
|
| 46 |
+
EN:
|
| 47 |
+
This model was adjusted with a specialized dataset of real Cisco commands, with an instruction-input-output structure.
|
| 48 |
+
It is optimized to run on low-power GPUs thanks to:
|
| 49 |
+
|
| 50 |
+
- 4-bit quantization
|
| 51 |
+
- LoRA adapters
|
| 52 |
+
|
| 53 |
+
**Key features:**
|
| 54 |
+
|
| 55 |
+
- Natural language understanding in Spanish
|
| 56 |
+
- Generation of real Cisco commands
|
| 57 |
+
- Compatible with multi-agent systems
|
| 58 |
+
- Able to detect when to use external tools
|
| 59 |
+
|
| 60 |
+
ES:
|
| 61 |
+
Este modelo fue ajustado con un dataset especializado en comandos reales de CiscO, con estructura instrucción–entrada–salida.
|
| 62 |
+
Está optimizado para ejecutarse en GPUs de bajo consumo gracias a:
|
| 63 |
|
| 64 |
+
- Cuantización 4-bit
|
| 65 |
+
- Adaptadores LoRA
|
| 66 |
|
| 67 |
+
- Comprensión de lenguaje natural en español
|
| 68 |
+
- Generación de comandos Cisco reales
|
| 69 |
+
- Compatible con sistemas multi-agente
|
| 70 |
+
- Capaz de detectar cuándo usar herramientas externas
|
| 71 |
|
| 72 |
+
**Key features:**
|
| 73 |
+
|
| 74 |
+
- Comprensión de lenguaje natural en español
|
| 75 |
+
- Generación de comandos Cisco reales
|
| 76 |
+
- Compatible con sistemas multi-agente
|
| 77 |
+
- Capaz de detectar cuándo usar herramientas externas
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
- **Developed by:** Juan Jose Angel Duran Calvache, Alison Daniela Ruiz Muñoz. -Universidad del Cauca
|
| 81 |
+
- **Funded by [optional]:** Juan Jose Angel Duran Calvache, Alison Daniela Ruiz Muñoz.
|
| 82 |
+
- **Shared by [optional]:** Juan Jose Angel Duran Calvache, Alison Daniela Ruiz Muñoz.
|
| 83 |
+
- **Model type:** Causal Language Model (Text Generation)
|
| 84 |
+
- **Language(s) (NLP):** Español
|
| 85 |
+
- **License:** LLaMA 3.2
|
| 86 |
+
- **Finetuned from model [optional]:** llama32-3b
|
| 87 |
|
| 88 |
### Model Sources [optional]
|
| 89 |
|
| 90 |
<!-- Provide the basic links for the model. -->
|
| 91 |
|
| 92 |
+
- **Repository:** https://github.com/3NombresJJA/Cisco-llm-agent
|
| 93 |
- **Paper [optional]:** [More Information Needed]
|
| 94 |
- **Demo [optional]:** [More Information Needed]
|
| 95 |
|
|
|
|
| 98 |
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 99 |
|
| 100 |
### Direct Use
|
| 101 |
+
EN:
|
| 102 |
+
- Direct generation of Cisco IOS configurations
|
| 103 |
+
- Support for networking students
|
| 104 |
+
- Simulation of router and switch configurations
|
| 105 |
+
- Technical conversational assistants
|
| 106 |
+
|
| 107 |
+
ES:
|
| 108 |
+
- Generación directa de configuraciones Cisco IOS
|
| 109 |
+
- Soporte a estudiantes de redes
|
| 110 |
+
- Simulación de configuraciones de routers y switches
|
| 111 |
+
- Asistentes conversacionales técnicos
|
| 112 |
|
| 113 |
### Downstream Use [optional]
|
| 114 |
|
| 115 |
+
EN:
|
| 116 |
+
- Integration with LangGraph + LangChain
|
| 117 |
+
- Automation of real configurations
|
| 118 |
+
- Virtual laboratory systems
|
| 119 |
+
- Educational platforms
|
| 120 |
|
| 121 |
+
ES:
|
| 122 |
+
- Integración con LangGraph + LangChain
|
| 123 |
+
- Automatización de configuraciones reales
|
| 124 |
+
- Sistemas de laboratorio virtual
|
| 125 |
+
- Plataformas educativas
|
| 126 |
|
| 127 |
### Out-of-Scope Use
|
| 128 |
|
| 129 |
+
|
| 130 |
+
|
| 131 |
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 132 |
|
| 133 |
+
EN:
|
| 134 |
+
- Not designed for offensive pentesting
|
| 135 |
+
- Not designed for production in real critical infrastructures
|
| 136 |
+
- Does not guarantee security validation
|
| 137 |
+
|
| 138 |
+
ES:
|
| 139 |
+
- No diseñado para pentesting ofensivo
|
| 140 |
+
- No diseñado para producción en infraestructuras críticas reales
|
| 141 |
+
- No garantiza validación de seguridad
|
| 142 |
|
| 143 |
## Bias, Risks, and Limitations
|
| 144 |
|
| 145 |
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 146 |
|
| 147 |
+
EN:
|
| 148 |
+
- The model may invent IP addresses if they are not specified
|
| 149 |
+
- Does not validate real topologies
|
| 150 |
+
- May produce incomplete configurations if the prompt is ambiguous
|
| 151 |
+
- Was only trained on basic to intermediate configurations
|
| 152 |
+
|
| 153 |
+
ES:
|
| 154 |
+
- El modelo puede inventar direcciones IP si no se especifican
|
| 155 |
+
- No valida topologías reales
|
| 156 |
+
- Puede producir configuraciones incompletas si el prompt es ambiguo
|
| 157 |
+
- Solo fue entrenado en configuraciones básicas – intermedias
|
| 158 |
### Recommendations
|
| 159 |
|
| 160 |
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 161 |
|
| 162 |
+
EN:
|
| 163 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
| 164 |
+
- Use in educational or simulated environments
|
| 165 |
+
- Combine with verification agents
|
| 166 |
+
|
| 167 |
+
ES:
|
| 168 |
+
Los usuarios (tanto directos como secundarios) deben ser conscientes de los riesgos, sesgos y limitaciones del modelo.
|
| 169 |
+
- Siempre validar las configuraciones antes de aplicarlas a producción
|
| 170 |
+
- Usar en entornos educativos o simulados
|
| 171 |
+
- Combinar con agentes de verificación
|
| 172 |
+
|
| 173 |
|
| 174 |
## How to Get Started with the Model
|
| 175 |
|
| 176 |
Use the code below to get started with the model.
|
| 177 |
|
| 178 |
+
```bash
|
| 179 |
+
pip install transformers peft accelerate bitsandbytes torch
|
| 180 |
+
|
| 181 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 182 |
+
from peft import PeftModel
|
| 183 |
+
import torch
|
| 184 |
+
|
| 185 |
+
base_model = "llama32-3b"
|
| 186 |
+
lora_repo = "Awakate/llama32-router-lora"
|
| 187 |
+
|
| 188 |
+
tokenizer = AutoTokenizer.from_pretrained(lora_repo)
|
| 189 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 190 |
+
base_model,
|
| 191 |
+
load_in_4bit=True,
|
| 192 |
+
device_map="auto"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
model = PeftModel.from_pretrained(model, lora_repo)
|
| 196 |
+
|
| 197 |
+
pipe = pipeline(
|
| 198 |
+
"text-generation",
|
| 199 |
+
model=model,
|
| 200 |
+
tokenizer=tokenizer,
|
| 201 |
+
max_new_tokens=200,
|
| 202 |
+
temperature=0.1
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
prompt = "Configura la interfaz Gi0/0 con ip 192.168.1.1 máscara 255.255.255.0 y vlan 10"
|
| 206 |
+
print(pipe(prompt)[0]["generated_text"])
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
|
| 212 |
## Training Details
|
| 213 |
|
|
|
|
| 215 |
|
| 216 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 217 |
|
| 218 |
+
The dataset used is posted in the github link, it was a personalized dastaset in format JSON with the following structure:
|
| 219 |
+
|
| 220 |
+
El dataset utilizado se encuentra publicado en el enlace de GitHub. Se trata de un dataset personalizado en formato JSON con la siguiente estructura:
|
| 221 |
+
{
|
| 222 |
+
"instruction": "Configurar interfaz",
|
| 223 |
+
"input": "Gi0/0 con IP 192.168.1.1",
|
| 224 |
+
"output": "interface Gi0/0..."
|
| 225 |
+
}
|
| 226 |
+
Contain examples of: Interfaces, VLAN, DHCP, OSPF, NAT, ACL and DNS
|
| 227 |
+
Contiene ejemplos de: Interfaces, VLAN, DHCP, OSPF, NAT, ACL y DNS
|
| 228 |
|
| 229 |
### Training Procedure
|
| 230 |
|
| 231 |
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 232 |
|
| 233 |
+
- Fine-tuning con LoRA (Low Rank Adaptation)
|
| 234 |
+
- Cuantización 4-bit
|
| 235 |
+
- Framework: transformers + peft
|
| 236 |
+
|
| 237 |
+
|
| 238 |
#### Preprocessing [optional]
|
| 239 |
|
|
|
|
| 240 |
|
| 241 |
|
| 242 |
+
There is no pre proccesing of the data.
|
| 243 |
+
No se hizo procesamiento de los datos.
|
| 244 |
+
|
| 245 |
#### Training Hyperparameters
|
| 246 |
|
| 247 |
+
- **Training regime:**
|
| 248 |
+
Epochs: 5
|
| 249 |
+
Batch size: 2
|
| 250 |
+
Gradient accumulation: 8
|
| 251 |
+
Learning rate: 8e-5
|
| 252 |
+
LoRA r: 16
|
| 253 |
+
LoRA alpha: 32
|
| 254 |
+
Precision: FP16
|
| 255 |
+
LoRA: Dropout: 0.05
|
| 256 |
+
Max length: 200
|
| 257 |
+
|
| 258 |
+
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 259 |
|
| 260 |
#### Speeds, Sizes, Times [optional]
|
| 261 |
|
| 262 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 263 |
|
| 264 |
+
EN:
|
| 265 |
+
The finetune weights with Lora have a size of 18MB and were processed in an hour and a half of compilation in 115 checkpoints.
|
| 266 |
+
|
| 267 |
+
ES:
|
| 268 |
+
Los pesos del finetune con lora tienen un peso de 18MB, fue procesado en hora y media de compilación en 115 checkpoints.
|
| 269 |
+
|
| 270 |
|
| 271 |
## Evaluation
|
| 272 |
|
|
|
|
| 278 |
|
| 279 |
<!-- This should link to a Dataset Card if possible. -->
|
| 280 |
|
| 281 |
+
EN:
|
| 282 |
+
-Human testing with real prompts
|
| 283 |
+
-Integration with LangGraph agents
|
| 284 |
+
-Manual validation of Cisco commands
|
| 285 |
+
|
| 286 |
+
ES:
|
| 287 |
+
-Pruebas humanas con prompts reales
|
| 288 |
+
-Integración con agentes LangGraph
|
| 289 |
+
-Validación manual de comandos Cisco
|
| 290 |
|
| 291 |
#### Factors
|
| 292 |
|
|
|
|
| 302 |
|
| 303 |
### Results
|
| 304 |
|
| 305 |
+
|
| 306 |
+

|
| 307 |
+
|
| 308 |
+
|
| 309 |
+

|
| 310 |
+
|
| 311 |
+
|
| 312 |
+

|
| 313 |
+
|
| 314 |
|
| 315 |
#### Summary
|
| 316 |
|
| 317 |
+
EN:
|
| 318 |
+
The agent works in a curious way. An example of agent integration can be found in the GitHub repository, where it was possible to verify through prompt engineering
|
| 319 |
+
the understanding of the knowledge model added by the fine-tune. However, it does not respond effectively 100% of the time, so the results must be taken with a grain of salt.
|
| 320 |
+
The agent works in a curious way. An example of agent integration can be found in the GitHub repository, where it was possible to verify through prompt engineering
|
| 321 |
|
| 322 |
+
ES:
|
| 323 |
+
El agente funciona de forma curiosa, se encuentra un ejemplo de integracion a agente en el repositorio de github, donde se pudo comprobar atravez de prompt engineering
|
| 324 |
+
el entendimiento del modelo del conocimiento agregado por el finetune, sin embargo no responde de forma efectiva el 100% de las veces por lo que se debe de tomar con detalle
|
| 325 |
+
los resultados.
|
| 326 |
|
| 327 |
## Model Examination [optional]
|
| 328 |
|
|
|
|
| 336 |
|
| 337 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 338 |
|
| 339 |
+
- **Hardware Type:** GPU RTX 4050 6GB laptop version
|
| 340 |
+
- **Hours used:** 4
|
| 341 |
+
- **Cloud Provider:** Local
|
| 342 |
- **Compute Region:** [More Information Needed]
|
| 343 |
+
- **Carbon Emitted:** Menos de 0.5
|
| 344 |
|
| 345 |
## Technical Specifications [optional]
|
| 346 |
|
| 347 |
### Model Architecture and Objective
|
| 348 |
|
| 349 |
+
-Base: LLaMA 3.2 – 3B parameters
|
| 350 |
+
-Adaptation: LoRA
|
| 351 |
+
-Precision: 4-bit
|
| 352 |
+
-Objective: Causal Language Modeling
|
| 353 |
|
| 354 |
### Compute Infrastructure
|
| 355 |
|
|
|
|
| 357 |
|
| 358 |
#### Hardware
|
| 359 |
|
| 360 |
+
Linux in WSL
|
| 361 |
+
|
| 362 |
+
Intel i5 12500H
|
| 363 |
+
8GB RAM DDR4
|
| 364 |
+
RTX 4050 6GB laptop
|
| 365 |
+
SSD M.2
|
| 366 |
|
| 367 |
#### Software
|
| 368 |
|
|
|
|
| 388 |
|
| 389 |
## More Information [optional]
|
| 390 |
|
| 391 |
+
Proyecto Academico para RTN 2025-2
|
| 392 |
|
| 393 |
## Model Card Authors [optional]
|
| 394 |
|
| 395 |
+
Juan Jose Angel Duran Calvache
|
| 396 |
+
Alison Daniela Ruiz Muñoz
|
| 397 |
|
| 398 |
## Model Card Contact
|
| 399 |
|
| 400 |
+
joseduran@unicauca.edu.co
|
| 401 |
+
alisonruiz@unicauca.edu.co
|
| 402 |
+
|
| 403 |
### Framework versions
|
| 404 |
|
| 405 |
+
- PEFT 0.18.0
|