nmkhokhlov
commited on
Commit
·
612d012
1
Parent(s):
b333688
Remove training artifacts
Browse files- latest +0 -1
- rng_state_0.pth +0 -3
- rng_state_1.pth +0 -3
- rng_state_2.pth +0 -3
- rng_state_3.pth +0 -3
- rng_state_4.pth +0 -3
- rng_state_5.pth +0 -3
- rng_state_6.pth +0 -3
- rng_state_7.pth +0 -3
- scheduler.pt +0 -3
- trainer_state.json +0 -0
- training_args.bin +0 -3
- zero_to_fp32.py +0 -760
latest
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step904
|
|
|
|
|
|
rng_state_0.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:2aa3b199a6852cdd1cba62539afa50ecb4d397d94a695818ea1d9946b8653f76
|
| 3 |
-
size 15920
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_1.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3fc667634ee9903c756967f07fad7943e85da70284ee5588e235cba7f5686b51
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_2.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7d8656dbc5b8aef9b3b2a3c6843ada9a3dcf759800d8bb69f03c1eeab188a0f8
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_3.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:443e35471f0855ee1c45505d670899cc6d14786fdc8947a8a7d42d87d1e21667
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_4.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:45f7f10857a0bfbb73af85f384029b8392fbfefbee0de21b050fba883244c2c4
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_5.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:632333e189d17bf4deb60a342ba16da53e8056c7cac6295fad33eda84d4104a4
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_6.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:359d203bf20ba508cba4e15a57cbcce5e7599dfac9afecde3f9b54d9a24a18ba
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_7.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0cc09b08b3c4e19867b731c6c4acc49dd500202da095249952fda571d4a7ab4d
|
| 3 |
-
size 15984
|
|
|
|
|
|
|
|
|
|
|
|
scheduler.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0609e6553a2adccbe43a0f012f13ca77d824934c6b192f615ed416dc4f0b2eae
|
| 3 |
-
size 1064
|
|
|
|
|
|
|
|
|
|
|
|
trainer_state.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3dbaf3e7dd019f268a5fb0de9bc14e3abad37d27bcd887ea2e275afc533ccc4e
|
| 3 |
-
size 7864
|
|
|
|
|
|
|
|
|
|
|
|
zero_to_fp32.py
DELETED
|
@@ -1,760 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
-
# Copyright (c) Microsoft Corporation.
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
# DeepSpeed Team
|
| 7 |
-
|
| 8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
-
# application.
|
| 12 |
-
#
|
| 13 |
-
# example:
|
| 14 |
-
# python zero_to_fp32.py . output_dir/
|
| 15 |
-
# or
|
| 16 |
-
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
-
|
| 18 |
-
import argparse
|
| 19 |
-
import torch
|
| 20 |
-
import glob
|
| 21 |
-
import math
|
| 22 |
-
import os
|
| 23 |
-
import re
|
| 24 |
-
import gc
|
| 25 |
-
import json
|
| 26 |
-
import numpy as np
|
| 27 |
-
from tqdm import tqdm
|
| 28 |
-
from collections import OrderedDict
|
| 29 |
-
from dataclasses import dataclass
|
| 30 |
-
|
| 31 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
-
from deepspeed.utils import logger
|
| 34 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
@dataclass
|
| 40 |
-
class zero_model_state:
|
| 41 |
-
buffers: dict()
|
| 42 |
-
param_shapes: dict()
|
| 43 |
-
shared_params: list
|
| 44 |
-
ds_version: int
|
| 45 |
-
frozen_param_shapes: dict()
|
| 46 |
-
frozen_param_fragments: dict()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
debug = 0
|
| 50 |
-
|
| 51 |
-
# load to cpu
|
| 52 |
-
device = torch.device('cpu')
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def atoi(text):
|
| 56 |
-
return int(text) if text.isdigit() else text
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def natural_keys(text):
|
| 60 |
-
'''
|
| 61 |
-
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
-
(See Toothy's implementation in the comments)
|
| 64 |
-
'''
|
| 65 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
-
if not os.path.isdir(checkpoint_dir):
|
| 70 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
-
|
| 72 |
-
# there should be only one file
|
| 73 |
-
if zero_stage <= 2:
|
| 74 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
-
elif zero_stage == 3:
|
| 76 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
-
|
| 78 |
-
if not os.path.exists(file):
|
| 79 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
-
|
| 81 |
-
return file
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
-
|
| 88 |
-
if len(ckpt_files) == 0:
|
| 89 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
-
|
| 91 |
-
return ckpt_files
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def get_optim_files(checkpoint_dir):
|
| 95 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def get_model_state_files(checkpoint_dir):
|
| 99 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def parse_model_states(files):
|
| 103 |
-
zero_model_states = []
|
| 104 |
-
for file in files:
|
| 105 |
-
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
-
|
| 107 |
-
if BUFFER_NAMES not in state_dict:
|
| 108 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
-
if debug:
|
| 111 |
-
print("Found buffers:", buffer_names)
|
| 112 |
-
|
| 113 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
-
|
| 117 |
-
# collect parameters that are included in param_shapes
|
| 118 |
-
param_names = []
|
| 119 |
-
for s in param_shapes:
|
| 120 |
-
for name in s.keys():
|
| 121 |
-
param_names.append(name)
|
| 122 |
-
|
| 123 |
-
# update with frozen parameters
|
| 124 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
-
if frozen_param_shapes is not None:
|
| 126 |
-
if debug:
|
| 127 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
-
param_names += list(frozen_param_shapes.keys())
|
| 129 |
-
|
| 130 |
-
# handle shared params
|
| 131 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
-
|
| 133 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
-
|
| 135 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
-
|
| 137 |
-
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
-
param_shapes=param_shapes,
|
| 139 |
-
shared_params=shared_params,
|
| 140 |
-
ds_version=ds_version,
|
| 141 |
-
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
-
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
-
zero_model_states.append(z_model_state)
|
| 144 |
-
|
| 145 |
-
return zero_model_states
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
-
total_files = len(files)
|
| 150 |
-
state_dicts = []
|
| 151 |
-
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
-
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
-
# and also handle the case where it was already removed by another helper script
|
| 155 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
-
state_dicts.append(state_dict)
|
| 157 |
-
|
| 158 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
-
|
| 163 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
-
# use the max of the partition_count to get the dp world_size.
|
| 166 |
-
|
| 167 |
-
if type(world_size) is list:
|
| 168 |
-
world_size = max(world_size)
|
| 169 |
-
|
| 170 |
-
if world_size != total_files:
|
| 171 |
-
raise ValueError(
|
| 172 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
# the groups are named differently in each stage
|
| 177 |
-
if zero_stage <= 2:
|
| 178 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
-
elif zero_stage == 3:
|
| 180 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
-
else:
|
| 182 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
-
|
| 184 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
-
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
-
"""
|
| 190 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
-
|
| 192 |
-
Args:
|
| 193 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
-
|
| 195 |
-
"""
|
| 196 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
-
|
| 198 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
-
|
| 202 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
-
|
| 204 |
-
zero_model_states = parse_model_states(model_files)
|
| 205 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
-
|
| 207 |
-
if zero_stage <= 2:
|
| 208 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
-
exclude_frozen_parameters)
|
| 210 |
-
elif zero_stage == 3:
|
| 211 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
-
exclude_frozen_parameters)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
-
return
|
| 218 |
-
|
| 219 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
-
|
| 222 |
-
if debug:
|
| 223 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
-
|
| 226 |
-
wanted_params = len(frozen_param_shapes)
|
| 227 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
-
|
| 232 |
-
total_params = 0
|
| 233 |
-
total_numel = 0
|
| 234 |
-
for name, shape in frozen_param_shapes.items():
|
| 235 |
-
total_params += 1
|
| 236 |
-
unpartitioned_numel = shape.numel()
|
| 237 |
-
total_numel += unpartitioned_numel
|
| 238 |
-
|
| 239 |
-
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
-
|
| 241 |
-
if debug:
|
| 242 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
-
|
| 244 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def _has_callable(obj, fn):
|
| 248 |
-
attr = getattr(obj, fn, None)
|
| 249 |
-
return callable(attr)
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
-
|
| 255 |
-
# Reconstruction protocol:
|
| 256 |
-
#
|
| 257 |
-
# XXX: document this
|
| 258 |
-
|
| 259 |
-
if debug:
|
| 260 |
-
for i in range(world_size):
|
| 261 |
-
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
-
|
| 264 |
-
# XXX: memory usage doubles here (zero2)
|
| 265 |
-
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
-
merged_single_partition_of_fp32_groups = []
|
| 267 |
-
for i in range(num_param_groups):
|
| 268 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
-
avail_numel = sum(
|
| 272 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
-
|
| 274 |
-
if debug:
|
| 275 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
-
# not asserting if there is a mismatch due to possible padding
|
| 278 |
-
print(f"Have {avail_numel} numels to process.")
|
| 279 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
-
|
| 281 |
-
# params
|
| 282 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
-
# out-of-core computing solution
|
| 284 |
-
total_numel = 0
|
| 285 |
-
total_params = 0
|
| 286 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
-
offset = 0
|
| 288 |
-
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
-
for name, shape in shapes.items():
|
| 290 |
-
|
| 291 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
-
total_numel += unpartitioned_numel
|
| 293 |
-
total_params += 1
|
| 294 |
-
|
| 295 |
-
if debug:
|
| 296 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
-
offset += unpartitioned_numel
|
| 299 |
-
|
| 300 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
-
align_to = 2 * world_size
|
| 305 |
-
|
| 306 |
-
def zero2_align(x):
|
| 307 |
-
return align_to * math.ceil(x / align_to)
|
| 308 |
-
|
| 309 |
-
if debug:
|
| 310 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
-
|
| 312 |
-
offset = zero2_align(offset)
|
| 313 |
-
avail_numel = zero2_align(avail_numel)
|
| 314 |
-
|
| 315 |
-
if debug:
|
| 316 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
-
|
| 318 |
-
# Sanity check
|
| 319 |
-
if offset != avail_numel:
|
| 320 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
-
|
| 322 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
-
exclude_frozen_parameters):
|
| 327 |
-
state_dict = OrderedDict()
|
| 328 |
-
|
| 329 |
-
# buffers
|
| 330 |
-
buffers = zero_model_states[0].buffers
|
| 331 |
-
state_dict.update(buffers)
|
| 332 |
-
if debug:
|
| 333 |
-
print(f"added {len(buffers)} buffers")
|
| 334 |
-
|
| 335 |
-
if not exclude_frozen_parameters:
|
| 336 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
-
|
| 338 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
-
|
| 340 |
-
# recover shared parameters
|
| 341 |
-
for pair in zero_model_states[0].shared_params:
|
| 342 |
-
if pair[1] in state_dict:
|
| 343 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
-
|
| 345 |
-
return state_dict
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
-
remainder = unpartitioned_numel % world_size
|
| 350 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
-
return partitioned_numel, padding_numel
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
-
return
|
| 358 |
-
|
| 359 |
-
if debug:
|
| 360 |
-
for i in range(world_size):
|
| 361 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
-
|
| 364 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
-
wanted_params = len(frozen_param_shapes)
|
| 366 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
-
|
| 371 |
-
total_params = 0
|
| 372 |
-
total_numel = 0
|
| 373 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
-
total_params += 1
|
| 375 |
-
unpartitioned_numel = shape.numel()
|
| 376 |
-
total_numel += unpartitioned_numel
|
| 377 |
-
|
| 378 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
-
|
| 381 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
-
|
| 383 |
-
if debug:
|
| 384 |
-
print(
|
| 385 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
-
)
|
| 387 |
-
|
| 388 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
class GatheredTensor:
|
| 392 |
-
"""
|
| 393 |
-
A pseudo tensor that collects partitioned weights.
|
| 394 |
-
It is more memory efficient when there are multiple groups.
|
| 395 |
-
"""
|
| 396 |
-
|
| 397 |
-
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
-
self.flat_groups = flat_groups
|
| 399 |
-
self.flat_groups_offset = flat_groups_offset
|
| 400 |
-
self.offset = offset
|
| 401 |
-
self.partitioned_numel = partitioned_numel
|
| 402 |
-
self.shape = shape
|
| 403 |
-
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
-
|
| 405 |
-
def contiguous(self):
|
| 406 |
-
"""
|
| 407 |
-
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
-
"""
|
| 409 |
-
end_idx = self.offset + self.partitioned_numel
|
| 410 |
-
world_size = len(self.flat_groups)
|
| 411 |
-
pad_flat_param_chunks = []
|
| 412 |
-
|
| 413 |
-
for rank_i in range(world_size):
|
| 414 |
-
# for each rank, we need to collect weights from related group/groups
|
| 415 |
-
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
-
start_group_id = None
|
| 417 |
-
end_group_id = None
|
| 418 |
-
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
-
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
-
start_group_id = group_id
|
| 421 |
-
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
-
end_group_id = group_id
|
| 423 |
-
break
|
| 424 |
-
# collect weights from related group/groups
|
| 425 |
-
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
-
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
-
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
-
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
-
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
-
|
| 431 |
-
# collect weights from all ranks
|
| 432 |
-
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
-
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
-
return param
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
-
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
-
|
| 441 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
-
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
-
|
| 444 |
-
# merge list of dicts, preserving order
|
| 445 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
-
|
| 447 |
-
if debug:
|
| 448 |
-
for i in range(world_size):
|
| 449 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
-
|
| 451 |
-
wanted_params = len(param_shapes)
|
| 452 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
-
# not asserting if there is a mismatch due to possible padding
|
| 454 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
-
|
| 458 |
-
# params
|
| 459 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
-
# out-of-core computing solution
|
| 461 |
-
offset = 0
|
| 462 |
-
total_numel = 0
|
| 463 |
-
total_params = 0
|
| 464 |
-
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
-
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
-
unpartitioned_numel = shape.numel()
|
| 467 |
-
total_numel += unpartitioned_numel
|
| 468 |
-
total_params += 1
|
| 469 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
-
|
| 471 |
-
if debug:
|
| 472 |
-
print(
|
| 473 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
# memory efficient tensor
|
| 477 |
-
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
-
state_dict[name] = tensor
|
| 479 |
-
offset += partitioned_numel
|
| 480 |
-
|
| 481 |
-
offset *= world_size
|
| 482 |
-
|
| 483 |
-
# Sanity check
|
| 484 |
-
if offset != avail_numel:
|
| 485 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
-
|
| 487 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
-
exclude_frozen_parameters):
|
| 492 |
-
state_dict = OrderedDict()
|
| 493 |
-
|
| 494 |
-
# buffers
|
| 495 |
-
buffers = zero_model_states[0].buffers
|
| 496 |
-
state_dict.update(buffers)
|
| 497 |
-
if debug:
|
| 498 |
-
print(f"added {len(buffers)} buffers")
|
| 499 |
-
|
| 500 |
-
if not exclude_frozen_parameters:
|
| 501 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
-
|
| 503 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
-
|
| 505 |
-
# recover shared parameters
|
| 506 |
-
for pair in zero_model_states[0].shared_params:
|
| 507 |
-
if pair[1] in state_dict:
|
| 508 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
-
|
| 510 |
-
return state_dict
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
-
"""
|
| 515 |
-
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
-
"""
|
| 517 |
-
torch_state_dict = {}
|
| 518 |
-
converted_tensors = {}
|
| 519 |
-
for name, tensor in state_dict.items():
|
| 520 |
-
tensor_id = id(tensor)
|
| 521 |
-
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
-
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
-
torch_state_dict[name] = shared_tensor
|
| 524 |
-
else:
|
| 525 |
-
converted_tensors[tensor_id] = name
|
| 526 |
-
if return_empty_tensor:
|
| 527 |
-
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
-
else:
|
| 529 |
-
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
-
return torch_state_dict
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
-
tag=None,
|
| 535 |
-
exclude_frozen_parameters=False,
|
| 536 |
-
lazy_mode=False):
|
| 537 |
-
"""
|
| 538 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
-
via a model hub.
|
| 541 |
-
|
| 542 |
-
Args:
|
| 543 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
-
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
-
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
-
|
| 549 |
-
Returns:
|
| 550 |
-
- pytorch ``state_dict``
|
| 551 |
-
|
| 552 |
-
A typical usage might be ::
|
| 553 |
-
|
| 554 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
-
# do the training and checkpoint saving
|
| 556 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
-
model = model.cpu() # move to cpu
|
| 558 |
-
model.load_state_dict(state_dict)
|
| 559 |
-
# submit to model hub or save the model to share with others
|
| 560 |
-
|
| 561 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
-
|
| 565 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
-
|
| 567 |
-
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
-
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
-
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
-
|
| 571 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
-
for name, lazy_tensor in state_dict.item():
|
| 574 |
-
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
-
print(name, tensor)
|
| 576 |
-
# del tensor to release memory if it no longer in use
|
| 577 |
-
"""
|
| 578 |
-
if tag is None:
|
| 579 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
-
if os.path.isfile(latest_path):
|
| 581 |
-
with open(latest_path, 'r') as fd:
|
| 582 |
-
tag = fd.read().strip()
|
| 583 |
-
else:
|
| 584 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
-
|
| 586 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
-
|
| 588 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
-
|
| 591 |
-
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
-
if lazy_mode:
|
| 593 |
-
return state_dict
|
| 594 |
-
else:
|
| 595 |
-
return to_torch_tensor(state_dict)
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
-
output_dir,
|
| 600 |
-
max_shard_size="5GB",
|
| 601 |
-
safe_serialization=False,
|
| 602 |
-
tag=None,
|
| 603 |
-
exclude_frozen_parameters=False):
|
| 604 |
-
"""
|
| 605 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
-
|
| 608 |
-
Args:
|
| 609 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
-
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
-
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
-
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
-
"""
|
| 616 |
-
|
| 617 |
-
# Dependency pre-check
|
| 618 |
-
if safe_serialization:
|
| 619 |
-
try:
|
| 620 |
-
from safetensors.torch import save_file
|
| 621 |
-
except ImportError:
|
| 622 |
-
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
-
raise
|
| 624 |
-
if max_shard_size is not None:
|
| 625 |
-
try:
|
| 626 |
-
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
-
except ImportError:
|
| 628 |
-
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
-
raise
|
| 630 |
-
|
| 631 |
-
# Convert zero checkpoint to state_dict
|
| 632 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
-
tag,
|
| 634 |
-
exclude_frozen_parameters,
|
| 635 |
-
lazy_mode=True)
|
| 636 |
-
|
| 637 |
-
# Shard the model if it is too big.
|
| 638 |
-
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
-
if max_shard_size is not None:
|
| 640 |
-
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
-
# an memory-efficient approach for sharding
|
| 642 |
-
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
-
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
-
filename_pattern=filename_pattern,
|
| 645 |
-
max_shard_size=max_shard_size)
|
| 646 |
-
else:
|
| 647 |
-
from collections import namedtuple
|
| 648 |
-
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
-
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
-
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
-
|
| 652 |
-
# Save the model by shard
|
| 653 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
-
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
-
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
-
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
-
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
-
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
-
if safe_serialization:
|
| 660 |
-
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
-
else:
|
| 662 |
-
torch.save(shard_state_dict, output_path)
|
| 663 |
-
# release the memory of current shard
|
| 664 |
-
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
-
del state_dict[tensor_name]
|
| 666 |
-
del shard_state_dict[tensor_name]
|
| 667 |
-
del shard_state_dict
|
| 668 |
-
gc.collect()
|
| 669 |
-
|
| 670 |
-
# Save index if sharded
|
| 671 |
-
if state_dict_split.is_sharded:
|
| 672 |
-
index = {
|
| 673 |
-
"metadata": state_dict_split.metadata,
|
| 674 |
-
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
-
}
|
| 676 |
-
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
-
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
-
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
-
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
-
f.write(content)
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
-
"""
|
| 685 |
-
1. Put the provided model to cpu
|
| 686 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
-
3. Load it into the provided model
|
| 688 |
-
|
| 689 |
-
Args:
|
| 690 |
-
- ``model``: the model object to update
|
| 691 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
-
|
| 694 |
-
Returns:
|
| 695 |
-
- ``model`: modified model
|
| 696 |
-
|
| 697 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
-
conveniently placed for you in the checkpoint folder.
|
| 700 |
-
|
| 701 |
-
A typical usage might be ::
|
| 702 |
-
|
| 703 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
-
# submit to model hub or save the model to share with others
|
| 706 |
-
|
| 707 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
-
|
| 711 |
-
"""
|
| 712 |
-
logger.info(f"Extracting fp32 weights")
|
| 713 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
-
|
| 715 |
-
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
-
model = model.cpu()
|
| 717 |
-
model.load_state_dict(state_dict, strict=False)
|
| 718 |
-
|
| 719 |
-
return model
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
if __name__ == "__main__":
|
| 723 |
-
parser = argparse.ArgumentParser()
|
| 724 |
-
parser.add_argument("checkpoint_dir",
|
| 725 |
-
type=str,
|
| 726 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
-
parser.add_argument("output_dir",
|
| 728 |
-
type=str,
|
| 729 |
-
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
-
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
-
parser.add_argument(
|
| 732 |
-
"--max_shard_size",
|
| 733 |
-
type=str,
|
| 734 |
-
default="5GB",
|
| 735 |
-
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
-
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
-
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
-
"without CPU OOM issues.")
|
| 739 |
-
parser.add_argument(
|
| 740 |
-
"--safe_serialization",
|
| 741 |
-
default=False,
|
| 742 |
-
action='store_true',
|
| 743 |
-
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
-
parser.add_argument("-t",
|
| 745 |
-
"--tag",
|
| 746 |
-
type=str,
|
| 747 |
-
default=None,
|
| 748 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
-
args = parser.parse_args()
|
| 752 |
-
|
| 753 |
-
debug = args.debug
|
| 754 |
-
|
| 755 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
-
args.output_dir,
|
| 757 |
-
max_shard_size=args.max_shard_size,
|
| 758 |
-
safe_serialization=args.safe_serialization,
|
| 759 |
-
tag=args.tag,
|
| 760 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|