README update
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ import numpy as np
|
|
21 |
|
22 |
import tensorflow as tf
|
23 |
from datasets import load_metric, Dataset, DatasetDict
|
24 |
-
from transformers import
|
25 |
from transformers.keras_callbacks import KerasMetricCallback
|
26 |
|
27 |
# This example shows how this model can be used:
|
@@ -88,7 +88,7 @@ tf_validation_dataset = encoded_dataset["val"].to_tf_dataset(
|
|
88 |
)
|
89 |
|
90 |
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
91 |
-
num_epochs =
|
92 |
batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size)
|
93 |
total_train_steps = int(batches_per_epoch * num_epochs)
|
94 |
|
|
|
21 |
|
22 |
import tensorflow as tf
|
23 |
from datasets import load_metric, Dataset, DatasetDict
|
24 |
+
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer
|
25 |
from transformers.keras_callbacks import KerasMetricCallback
|
26 |
|
27 |
# This example shows how this model can be used:
|
|
|
88 |
)
|
89 |
|
90 |
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
91 |
+
num_epochs = 25
|
92 |
batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size)
|
93 |
total_train_steps = int(batches_per_epoch * num_epochs)
|
94 |
|