Augusto777's picture
End of training
0f1978d verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8090909090909091

swinv2-tiny-patch4-window8-256-Diabetic-Retinopathy

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5203
  • Accuracy: 0.8091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 1.6054 0.4909
1.6039 2.0 10 1.5774 0.4909
1.6039 3.0 15 1.4627 0.4909
1.4766 4.0 20 1.3211 0.4909
1.4766 5.0 25 1.2294 0.4909
1.2308 6.0 30 1.0657 0.4909
1.2308 7.0 35 0.9504 0.6545
1.017 8.0 40 0.8463 0.7364
1.017 9.0 45 0.7463 0.7455
0.8345 10.0 50 0.6948 0.7455
0.8345 11.0 55 0.6460 0.7545
0.7594 12.0 60 0.6403 0.7545
0.7594 13.0 65 0.6319 0.7545
0.7228 14.0 70 0.5999 0.7455
0.7228 15.0 75 0.5922 0.7545
0.6851 16.0 80 0.5955 0.7636
0.6851 17.0 85 0.5731 0.7545
0.6549 18.0 90 0.5603 0.7818
0.6549 19.0 95 0.5386 0.7818
0.643 20.0 100 0.5424 0.7727
0.643 21.0 105 0.5295 0.7909
0.5951 22.0 110 0.5203 0.8091
0.5951 23.0 115 0.5162 0.7909
0.5913 24.0 120 0.5095 0.7818
0.5913 25.0 125 0.5140 0.7909
0.5462 26.0 130 0.5167 0.7636
0.5462 27.0 135 0.4943 0.7909
0.5538 28.0 140 0.4844 0.7636
0.5538 29.0 145 0.4821 0.7727
0.5497 30.0 150 0.4952 0.7727
0.5497 31.0 155 0.4995 0.7818
0.4923 32.0 160 0.4910 0.7727
0.4923 33.0 165 0.5029 0.7818
0.5228 34.0 170 0.5083 0.7818
0.5228 35.0 175 0.4984 0.7909
0.4986 36.0 180 0.4914 0.7909
0.4986 37.0 185 0.4926 0.7909
0.5154 38.0 190 0.4915 0.8
0.5154 39.0 195 0.4886 0.8
0.5081 40.0 200 0.4875 0.8

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0