Augusto777's picture
End of training
65e3bd9 verified
|
raw
history blame
4.1 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-ex
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-ex

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2148
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 6.6832 0.1087
No log 2.0 7 1.2148 0.4565
4.4686 2.86 10 2.5061 0.3261
4.4686 4.0 14 1.4142 0.4565
4.4686 4.86 17 1.6118 0.4565
1.7414 6.0 21 1.2484 0.4565
1.7414 6.86 24 1.3690 0.3261
1.7414 8.0 28 1.4065 0.4565
1.3568 8.86 31 1.2682 0.3261
1.3568 10.0 35 1.2140 0.4565
1.3568 10.86 38 1.2591 0.4565
1.2275 12.0 42 1.2519 0.4565
1.2275 12.86 45 1.2184 0.4565
1.2275 14.0 49 1.2592 0.4565
1.3025 14.86 52 1.2246 0.4565
1.3025 16.0 56 1.3046 0.4565
1.3025 16.86 59 1.2177 0.4565
1.2981 18.0 63 1.2339 0.4565
1.2981 18.86 66 1.3139 0.4565
1.2765 20.0 70 1.2116 0.4565
1.2765 20.86 73 1.2284 0.3261
1.2765 22.0 77 1.2246 0.4565
1.2074 22.86 80 1.2631 0.4565
1.2074 24.0 84 1.2092 0.4565
1.2074 24.86 87 1.2147 0.4565
1.2048 26.0 91 1.2121 0.4565
1.2048 26.86 94 1.2156 0.4565
1.2048 28.0 98 1.2249 0.4565
1.2068 28.86 101 1.2159 0.4565
1.2068 30.0 105 1.2108 0.4565
1.2068 30.86 108 1.2116 0.4565
1.1961 32.0 112 1.2078 0.4565
1.1961 32.86 115 1.2070 0.4565
1.1961 34.0 119 1.2072 0.4565
1.1999 34.29 120 1.2072 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0