Augusto777's picture
End of training
32db5e3 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-RD
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8672727272727273

beit-base-patch16-224-RD

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3771
  • Accuracy: 0.8673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4986 0.99 40 1.4512 0.4945
1.0553 1.99 80 0.9355 0.7473
0.7972 2.98 120 0.7250 0.7436
0.7156 4.0 161 0.5845 0.7582
0.6723 4.99 201 0.5509 0.8036
0.5942 5.99 241 0.5018 0.8218
0.6223 6.98 281 0.4993 0.8218
0.5731 8.0 322 0.4590 0.8291
0.5583 8.99 362 0.4878 0.8
0.5784 9.99 402 0.4485 0.8455
0.4968 10.98 442 0.4305 0.8345
0.5324 12.0 483 0.4737 0.8345
0.4629 12.99 523 0.4253 0.8436
0.4398 13.99 563 0.4184 0.8473
0.4575 14.98 603 0.3929 0.8564
0.4554 16.0 644 0.4282 0.8491
0.4646 16.99 684 0.4363 0.8236
0.4535 17.99 724 0.4337 0.8455
0.3823 18.98 764 0.3771 0.8673
0.4584 20.0 805 0.3966 0.8564
0.4103 20.99 845 0.4001 0.8491
0.3659 21.99 885 0.3948 0.8582
0.3241 22.98 925 0.4007 0.8582
0.3575 24.0 966 0.4328 0.8327
0.3411 24.99 1006 0.3990 0.8564
0.3829 25.99 1046 0.4011 0.8636
0.2855 26.98 1086 0.3859 0.8655
0.254 28.0 1127 0.4196 0.8673
0.2937 28.99 1167 0.4340 0.8618
0.258 29.99 1207 0.4387 0.8509
0.2735 30.98 1247 0.4097 0.8655
0.2674 32.0 1288 0.4183 0.8527
0.2547 32.99 1328 0.4217 0.8636
0.2109 33.99 1368 0.4240 0.8527
0.2248 34.98 1408 0.4250 0.86
0.2397 36.0 1449 0.4431 0.8582
0.1823 36.99 1489 0.4442 0.8582
0.1834 37.99 1529 0.4362 0.8618
0.1864 38.98 1569 0.4338 0.8545
0.1779 39.75 1600 0.4332 0.8582

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0