BEiT-RD-DA / README.md
Augusto777's picture
End of training
df047b1 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BEiT-RD-DA
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6654545454545454

BEiT-RD-DA

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9617
  • Accuracy: 0.6655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4123 1.0 96 1.4099 0.4927
0.9503 2.0 192 1.8852 0.4927
0.8284 3.0 288 2.1702 0.5073
0.7677 4.0 384 2.0408 0.5345
0.788 5.0 480 2.7991 0.5127
0.5822 6.0 576 2.0951 0.5636
0.5172 7.0 672 2.5977 0.5364
0.4615 8.0 768 2.0968 0.58
0.3672 9.0 864 2.8535 0.5436
0.379 10.0 960 2.9515 0.5382
0.3301 11.0 1056 2.7200 0.5582
0.2786 12.0 1152 1.9000 0.6273
0.2746 13.0 1248 3.1768 0.5364
0.2298 14.0 1344 3.1003 0.5527
0.2013 15.0 1440 2.3441 0.6182
0.2225 16.0 1536 3.0214 0.5709
0.2229 17.0 1632 2.0676 0.6164
0.2024 18.0 1728 2.6478 0.5673
0.1401 19.0 1824 2.8952 0.5636
0.1984 20.0 1920 2.3083 0.6145
0.1788 21.0 2016 3.7702 0.52
0.1907 22.0 2112 1.9617 0.6655
0.1113 23.0 2208 2.6546 0.5964
0.1293 24.0 2304 2.6427 0.6036
0.1354 25.0 2400 3.4105 0.5527
0.1447 26.0 2496 2.5460 0.6127
0.0995 27.0 2592 2.9865 0.5855
0.1369 28.0 2688 3.5281 0.5545
0.1238 29.0 2784 2.8161 0.6018
0.1256 30.0 2880 3.4917 0.5491
0.1064 31.0 2976 3.0659 0.58
0.1333 32.0 3072 3.5972 0.5473
0.1134 33.0 3168 3.6116 0.54
0.0831 34.0 3264 3.5308 0.5509
0.1035 35.0 3360 3.4789 0.5582
0.0957 36.0 3456 3.6358 0.5509
0.0764 37.0 3552 3.3639 0.5709
0.072 38.0 3648 3.5639 0.5564
0.0727 39.0 3744 3.5193 0.5582
0.0619 40.0 3840 3.5836 0.5582

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0