metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-tiny-finetune-hindi-fleurs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: hi_in
split: train
args: hi_in
metrics:
- name: Wer
type: wer
value: 0.8889948502765592
whisper-tiny-finetune-hindi-fleurs
This model is a fine-tuned version of openai/whisper-tiny on the google/fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.8973
- Wer Ortho: 0.8687
- Wer: 0.8890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
1.9951 | 0.83 | 100 | 1.8632 | 1.1021 | 1.1432 |
1.2634 | 1.67 | 200 | 1.2561 | 1.0496 | 1.1282 |
0.8868 | 2.5 | 300 | 1.0672 | 0.8591 | 0.8911 |
0.6568 | 3.33 | 400 | 0.9656 | 0.9689 | 1.0460 |
0.5288 | 4.17 | 500 | 0.8973 | 0.8687 | 0.8890 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0