Arjun4707 commited on
Commit
88e0503
1 Parent(s): 845c224

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -16
README.md CHANGED
@@ -2,10 +2,16 @@
2
  license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
- - generated_from_keras_callback
6
  model-index:
7
  - name: Distilbert-base-uncased_dair-ai_emotion
8
  results: []
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
@@ -13,25 +19,37 @@ probably proofread and complete it, then remove this comment. -->
13
 
14
  # Distilbert-base-uncased_dair-ai_emotion
15
 
16
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
  - Train Loss: 0.0896
19
  - Train Accuracy: 0.9582
20
  - Validation Loss: 0.1326
21
  - Validation Accuracy: 0.9375
22
- - Epoch: 3
23
 
24
  ## Model description
25
 
26
- More information needed
27
-
 
 
 
 
 
 
28
  ## Intended uses & limitations
29
 
30
- More information needed
 
 
 
 
 
 
31
 
32
  ## Training and evaluation data
33
 
34
- More information needed
35
 
36
  ## Training procedure
37
 
@@ -48,12 +66,4 @@ The following hyperparameters were used during training:
48
  | 0.5820 | 0.8014 | 0.2002 | 0.9305 | 0 |
49
  | 0.1598 | 0.9366 | 0.1431 | 0.9355 | 1 |
50
  | 0.1101 | 0.9515 | 0.1390 | 0.9355 | 2 |
51
- | 0.0896 | 0.9582 | 0.1326 | 0.9375 | 3 |
52
-
53
-
54
- ### Framework versions
55
-
56
- - Transformers 4.35.2
57
- - TensorFlow 2.15.0
58
- - Datasets 2.16.1
59
- - Tokenizers 0.15.1
 
2
  license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
+ - emotions
6
  model-index:
7
  - name: Distilbert-base-uncased_dair-ai_emotion
8
  results: []
9
+ language:
10
+ - en
11
+ metrics:
12
+ - accuracy
13
+ - f1
14
+ pipeline_tag: text-classification
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
 
19
 
20
  # Distilbert-base-uncased_dair-ai_emotion
21
 
22
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an dair-ai/emotion dataset.
23
  It achieves the following results on the evaluation set:
24
  - Train Loss: 0.0896
25
  - Train Accuracy: 0.9582
26
  - Validation Loss: 0.1326
27
  - Validation Accuracy: 0.9375
28
+ - Epoch: 4
29
 
30
  ## Model description
31
 
32
+ Model takes text as input and outputs an predictions for one of the 6 emotions.
33
+ { 0: 'sadness',
34
+ 1:'joy',
35
+ 2: "love",
36
+ 3: "anger",
37
+ 4: "fear",
38
+ 5: "surprise"}
39
+
40
  ## Intended uses & limitations
41
 
42
+ Use to identify an emotion of a user from above mentioned emotions.
43
+
44
+ # Load model directly
45
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion")
48
+ model = AutoModelForSequenceClassification.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion", from_tf = True)
49
 
50
  ## Training and evaluation data
51
 
52
+ Training data size = 16000, validation data = 2000, and test data = 2000
53
 
54
  ## Training procedure
55
 
 
66
  | 0.5820 | 0.8014 | 0.2002 | 0.9305 | 0 |
67
  | 0.1598 | 0.9366 | 0.1431 | 0.9355 | 1 |
68
  | 0.1101 | 0.9515 | 0.1390 | 0.9355 | 2 |
69
+ | 0.0896 | 0.9582 | 0.1326 | 0.9375 | 3 |