mbert-multirc / README.md
Areepatw's picture
Initial model upload
64da771 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
  - f1
model-index:
  - name: mbert-multirc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: super_glue
          type: super_glue
          config: multirc
          split: validation
          args: multirc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5759075907590759
          - name: F1
            type: f1
            value: 0.5048127206005825

mbert-multirc

This model is a fine-tuned version of bert-base-multilingual-uncased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6812
  • Accuracy: 0.5759
  • F1: 0.5048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6862 1.0 1703 0.6812 0.5759 0.5048

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3