|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: calculator_model_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# calculator_model_test |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1663 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 512 |
|
- eval_batch_size: 512 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 3.0776 | 1.0 | 5 | 2.3467 | |
|
| 2.1508 | 2.0 | 10 | 1.8830 | |
|
| 1.7317 | 3.0 | 15 | 1.5145 | |
|
| 1.3813 | 4.0 | 20 | 1.1827 | |
|
| 1.1212 | 5.0 | 25 | 0.9861 | |
|
| 0.946 | 6.0 | 30 | 0.8613 | |
|
| 0.8189 | 7.0 | 35 | 0.7596 | |
|
| 0.7274 | 8.0 | 40 | 0.6659 | |
|
| 0.6581 | 9.0 | 45 | 0.6032 | |
|
| 0.6222 | 10.0 | 50 | 0.5788 | |
|
| 0.5988 | 11.0 | 55 | 0.5530 | |
|
| 0.5561 | 12.0 | 60 | 0.5159 | |
|
| 0.5173 | 13.0 | 65 | 0.4937 | |
|
| 0.4961 | 14.0 | 70 | 0.4725 | |
|
| 0.4748 | 15.0 | 75 | 0.4424 | |
|
| 0.4517 | 16.0 | 80 | 0.4525 | |
|
| 0.4394 | 17.0 | 85 | 0.4096 | |
|
| 0.4145 | 18.0 | 90 | 0.3804 | |
|
| 0.3882 | 19.0 | 95 | 0.3678 | |
|
| 0.3736 | 20.0 | 100 | 0.3467 | |
|
| 0.3562 | 21.0 | 105 | 0.3246 | |
|
| 0.3406 | 22.0 | 110 | 0.3180 | |
|
| 0.3231 | 23.0 | 115 | 0.2966 | |
|
| 0.3111 | 24.0 | 120 | 0.2839 | |
|
| 0.2992 | 25.0 | 125 | 0.2701 | |
|
| 0.2815 | 26.0 | 130 | 0.2644 | |
|
| 0.2753 | 27.0 | 135 | 0.2459 | |
|
| 0.2651 | 28.0 | 140 | 0.2375 | |
|
| 0.2532 | 29.0 | 145 | 0.2226 | |
|
| 0.2407 | 30.0 | 150 | 0.2142 | |
|
| 0.2339 | 31.0 | 155 | 0.2031 | |
|
| 0.2218 | 32.0 | 160 | 0.1959 | |
|
| 0.2142 | 33.0 | 165 | 0.1880 | |
|
| 0.2107 | 34.0 | 170 | 0.1871 | |
|
| 0.2062 | 35.0 | 175 | 0.1816 | |
|
| 0.1997 | 36.0 | 180 | 0.1789 | |
|
| 0.1961 | 37.0 | 185 | 0.1740 | |
|
| 0.1929 | 38.0 | 190 | 0.1707 | |
|
| 0.1907 | 39.0 | 195 | 0.1681 | |
|
| 0.1885 | 40.0 | 200 | 0.1663 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|