TunLangModel1.7 / README.md
Arbi-Houssem's picture
End of training
7a76dfc verified
|
raw
history blame
2.09 kB
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Arbi-Houssem/Tunisian_dataset_STT-TTS1
metrics:
  - wer
model-index:
  - name: Whisper Tunisien
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Tunisian_dataset_STT-TTS1
          type: Arbi-Houssem/Tunisian_dataset_STT-TTS1
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 102.98313878080414

Whisper Tunisien

This model is a fine-tuned version of openai/whisper-small on the Tunisian_dataset_STT-TTS1 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8010
  • Wer: 102.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1413 10.3093 1000 2.9765 135.4086
1.0017 20.6186 2000 2.8593 107.4578
0.9227 30.9278 3000 2.8201 100.3891
0.8583 41.2371 4000 2.8054 102.9831
0.8442 51.5464 5000 2.8010 102.9831

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1