TunLangModel1.5 / README.md
Arbi-Houssem's picture
End of training
933181e verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Arbi-Houssem/Tunisian_dataset_STT-TTS
metrics:
  - wer
model-index:
  - name: Whisper Tunisien
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Tunisian_dataset_STT-TTS
          type: Arbi-Houssem/Tunisian_dataset_STT-TTS
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 111.1901681759379

Whisper Tunisien

This model is a fine-tuned version of openai/whisper-small on the Tunisian_dataset_STT-TTS dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9898
  • Wer: 111.1902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2639 5.7471 500 2.8790 103.3635
0.0292 11.4943 1000 3.4175 131.9534
0.0045 17.2414 1500 3.7135 106.2743
0.0021 22.9885 2000 3.7732 119.7930
0.0012 28.7356 2500 3.8911 124.9677
0.0004 34.4828 3000 3.9580 130.2717
0.0003 40.2299 3500 3.9781 108.7969
0.0003 45.9770 4000 3.9898 111.1902

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1