|
--- |
|
library_name: peft |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- kanhatakeyama/ramdom-to-fixed-multiturn-Calm3 |
|
- llm-jp/magpie-sft-v1.0 |
|
- Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted |
|
model-index: |
|
- name: gemma-2-2b-axolotl-sft-v1.0 |
|
results: [] |
|
--- |
|
|
|
本モデルはaxolotlの使い方の解説記事のデモで作成されたモデルです。モデルとしては特に特に利用価値のないものになっているのでご注意ください。 |
|
|
|
[記事リンクはこちら](https://zenn.dev/aratako_lm/articles/b58ac364f9c9cd) |
|
|
|
以下、自動生成されたREADMEです。 |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.5.3.dev0` |
|
```yaml |
|
# 学習のベースモデルに関する設定 |
|
base_model: google/gemma-2-2b |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
# 学習後のモデルのHFへのアップロードに関する設定 |
|
hub_model_id: Aratako/gemma-2-2b-axolotl-sft-v1.0 |
|
hub_strategy: "end" |
|
push_dataset_to_hub: |
|
hf_use_auth_token: true |
|
|
|
# Liger Kernelの設定(学習の軽量・高速化) |
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_cross_entropy: false |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
# 量子化に関する設定 |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
|
|
# SFTに利用するchat templateの設定 |
|
chat_template: gemma |
|
|
|
# 学習データセットの前処理に関する設定 |
|
datasets: |
|
- path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3 |
|
split: 20240806filtered[0:10000] |
|
type: chat_template |
|
field_messages: messages |
|
message_field_role: role |
|
message_field_content: content |
|
- path: llm-jp/magpie-sft-v1.0 |
|
split: train[0:10000] |
|
type: chat_template |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: content |
|
- path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted |
|
split: train[0:10000] |
|
type: chat_template |
|
field_messages: conversations |
|
message_field_role: role |
|
message_field_content: content |
|
|
|
# データセット、モデルの出力先に関する設定 |
|
shuffle_merged_datasets: true |
|
dataset_prepared_path: /workspace/data/sft-data |
|
output_dir: /workspace/data/models/gemma-2-2b-axolotl-sft-v1.0 |
|
|
|
# valid datasetのサイズ |
|
val_set_size: 0.05 |
|
|
|
# LoRAに関する設定(フルファインチューニングしたい場合は全て空欄にする) |
|
adapter: qlora |
|
lora_model_dir: |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
# wandbに関する設定 |
|
wandb_project: axolotl |
|
wandb_entity: aratako-lm |
|
wandb_watch: |
|
wandb_name: sft-lora-1 |
|
wandb_log_model: |
|
|
|
# 学習に関する様々な設定 |
|
sequence_len: 4096 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
gradient_accumulation_steps: 16 |
|
micro_batch_size: 1 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
cosine_min_lr_ratio: 0.1 |
|
learning_rate: 3e-4 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: false |
|
early_stopping_patience: |
|
auto_resume_from_checkpoints: true |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
save_strategy: steps |
|
save_steps: 50 |
|
save_total_limit: 2 |
|
|
|
warmup_steps: 10 |
|
eval_steps: 50 |
|
eval_batch_size: 1 |
|
eval_table_size: |
|
eval_max_new_tokens: |
|
debug: |
|
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.01 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <pad> |
|
``` |
|
|
|
</details><br> |
|
|
|
# gemma-2-2b-axolotl-sft-v1.0 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on the kanhatakeyama/ramdom-to-fixed-multiturn-Calm3, the llm-jp/magpie-sft-v1.0 and the Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3378 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3251 | 0.3726 | 50 | 1.3855 | |
|
| 1.3015 | 0.7452 | 100 | 1.3378 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |