Anujgr8's picture
End of training
d700253 verified
|
raw
history blame
2.23 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-Odia-large-xlsr53
    results: []

wav2vec2-Odia-large-xlsr53

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2083
  • Wer: 0.1897
  • Cer: 0.0476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.9058 2.3622 300 3.1227 1.0 0.8690
1.1432 4.7244 600 0.4002 0.4333 0.1134
0.2628 7.0866 900 0.3145 0.3314 0.0850
0.1368 9.4488 1200 0.2585 0.2716 0.0686
0.0865 11.8110 1500 0.2332 0.2524 0.0619
0.0596 14.1732 1800 0.2253 0.2196 0.0538
0.0445 16.5354 2100 0.2202 0.2100 0.0527
0.0324 18.8976 2400 0.2126 0.2001 0.0511
0.0264 21.2598 2700 0.2089 0.1966 0.0498
0.0211 23.6220 3000 0.2083 0.1897 0.0476

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 1.18.3
  • Tokenizers 0.19.1