temp_model / README.md
AnonymousCS's picture
End of training
761b768 verified
|
raw
history blame
1.8 kB
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
model-index:
- name: temp_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# temp_model
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1984
- Accuracy: 0.9369
- F1: 0.3059
- Recall: 0.2267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
| No log | 1.0 | 351 | 0.1665 | 0.9401 | 0.16 | 0.0930 |
| 0.1813 | 2.0 | 702 | 0.2099 | 0.9418 | 0.1189 | 0.0640 |
| 0.1067 | 3.0 | 1053 | 0.1984 | 0.9369 | 0.3059 | 0.2267 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0