AnkitAI's picture
Update README.md
9a1fb61 verified
---
license: mit
datasets:
- dair-ai/emotion
language:
- en
library_name: transformers
widget:
- text: I am so happy with the results!
- text: I am so pissed with the results!
tags:
- debarta
- debarta-v3-small
- emotions-classifier
---
# Fast Emotion-X: Fine-tuned DeBERTa V3 Small Based Emotion Detection
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) for emotion detection using the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
## Overview
Fast Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa V3 Small model. It is designed to accurately classify text into one of six emotional categories. Leveraging the robust capabilities of DeBERTa, this model is fine-tuned on a comprehensive emotion dataset, ensuring high accuracy and reliability.
## Model Details
- **Model Name:** `AnkitAI/deberta-v3-small-base-emotions-classifier`
- **Base Model:** `microsoft/deberta-v3-small`
- **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
- **Fine-tuning:** The model is fine-tuned for emotion detection with a classification head for six emotional categories: anger, disgust, fear, joy, sadness, and surprise.
## Emotion Labels
- Anger
- Disgust
- Fear
- Joy
- Sadness
- Surprise
## Usage
You can use this model directly with the provided Python package or the Hugging Face `transformers` library.
### Installation
Install the package using pip:
```bash
pip install emotionclassifier
```
### Basic Usage
Here's an example of how to use the `emotionclassifier` to classify a single text:
```python
from emotionclassifier import EmotionClassifier
# Initialize the classifier with the default model
classifier = EmotionClassifier()
# Classify a single text
text = "I am very happy today!"
result = classifier.predict(text)
print("Emotion:", result['label'])
print("Confidence:", result['confidence'])
```
### Batch Processing
You can classify multiple texts at once using the `predict_batch` method:
```python
texts = ["I am very happy today!", "I am so sad."]
results = classifier.predict_batch(texts)
print("Batch processing results:", results)
```
### Visualization
To visualize the emotion distribution of a text:
```python
from emotionclassifier import plot_emotion_distribution
result = classifier.predict("I am very happy today!")
plot_emotion_distribution(result['probabilities'], classifier.labels.values())
```
### Command-Line Interface (CLI) Usage
You can also use the package from the command line:
```bash
emotionclassifier --model deberta-v3-small --text "I am very happy today!"
```
### DataFrame Integration
Integrate with pandas DataFrames to classify text columns:
```python
import pandas as pd
from emotionclassifier import DataFrameEmotionClassifier
df = pd.DataFrame({
'text': ["I am very happy today!", "I am so sad."]
})
classifier = DataFrameEmotionClassifier()
df = classifier.classify_dataframe(df, 'text')
print(df)
```
### Emotion Trends Over Time
Analyze and plot emotion trends over time:
```python
from emotionclassifier import EmotionTrends
texts = ["I am very happy today!", "I am feeling okay.", "I am very sad."]
trends = EmotionTrends()
emotions = trends.analyze_trends(texts)
trends.plot_trends(emotions)
```
### Fine-tuning
Fine-tune a pre-trained model on your own dataset:
```python
from emotionclassifier.fine_tune import fine_tune_model
# Define your training and validation datasets
train_dataset = ...
val_dataset = ...
# Fine-tune the model
fine_tune_model(classifier.model, classifier.tokenizer, train_dataset, val_dataset, output_dir='fine_tuned_model')
```
### Using transformers Library
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "AnkitAI/deberta-v3-small-base-emotions-classifier"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example usage
def predict_emotion(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
logits = outputs.logits
predictions = logits.argmax(dim=1)
return predictions
text = "I'm so happy with the results!"
emotion = predict_emotion(text)
print("Detected Emotion:", emotion)
```
## Training
The model was trained using the following parameters:
- **Learning Rate:** 2e-5
- **Batch Size:** 4
- **Weight Decay:** 0.01
- **Evaluation Strategy:** Epoch
### Training Details
- **Evaluation Loss:** 0.0858
- **Evaluation Runtime:** 110070.6349 seconds
- **Evaluation Samples/Second:** 78.495
- **Evaluation Steps/Second:** 2.453
- **Training Loss:** 0.1049
- **Evaluation Accuracy:** 94.6%
- **Evaluation Precision:** 94.8%
- **Evaluation Recall:** 94.5%
- **Evaluation F1 Score:** 94.7%
## Model Card Data
| Parameter | Value |
|-------------------------------|----------------------------|
| Model Name | microsoft/deberta-v3-small |
| Training Dataset | dair-ai/emotion |
| Number of Training Epochs | 20 |
| Learning Rate | 2e-5 |
| Per Device Train Batch Size | 4 |
| Evaluation Strategy | Epoch |
| Best Model Accuracy | 94.6% |
## License
This model is licensed under the [MIT License](LICENSE).