|
--- |
|
datasets: |
|
- roneneldan/TinyStories |
|
--- |
|
--- |
|
Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759, based on GPT-Neo architecture. |
|
|
|
--- |
|
Hyperparams used to train this model: |
|
``` |
|
"batch_size": 32, |
|
"block_size": 256, |
|
"lr": 5e-4, |
|
"n_layer": 6, |
|
"n_head": 6, |
|
"n_embd": 300, |
|
"dropout": 0.1, |
|
"weight_decay": 0.01, |
|
"epochs": 2, |
|
"eval_interval": 200, |
|
"eval_steps": 50, |
|
"vocab_size": 50257, |
|
"warmup_tokens": 10000, |
|
"gradient_accumulation_steps": 32, |
|
``` |
|
--- |
|
EXAMPLE USAGE |
|
```py |
|
!pip install --quiet transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model20 = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinystories-custom-21M') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") |
|
prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked" |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output = model20.generate(input_ids, temperature=0.2, max_length = 100, do_sample=True) |
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(output_text) |
|
``` |