DDHpose / common /mixste_ddhpose.py
Andyen512
Add model checkpoints and configs
1e45055
import math
import logging
from functools import partial
from collections import OrderedDict
from einops import rearrange, repeat
import numpy as np
from common.arguments import parse_args
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
from math import sqrt
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., changedim=False, currentdim=0, depth=0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.comb = comb
self.vis = vis
self.bonechain = bonechain
def forward(self, x, vis=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# Now x shape (3, B, heads, N, C//heads)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
if self.comb==True:
attn = (q.transpose(-2, -1) @ k) * self.scale
elif self.comb==False:
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if self.comb==True:
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
x = rearrange(x, 'B H N C -> B N (H C)')
elif self.comb==False:
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention_xxc(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_xc = nn.Linear(dim, dim , bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.comb = comb
self.vis = vis
self.bonechain = bonechain
def forward(self, x, xc=None, vis=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
if xc==None:
pass
else:
qkv_xc = self.qkv_xc(xc).reshape(B, N, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k_xc = qkv_xc[0]
# Now x shape (3, B, heads, N, C//heads)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
if self.comb==True:
attn = (q.transpose(-2, -1) @ k) * self.scale
elif self.comb==False:
attn = (q @ k.transpose(-2, -1)) * self.scale
if q.shape[-2]==17:
for chain in self.bonechain:
for idx in range(1,len(chain)-1):
ppidx = chain[idx-1]
pidx = chain[idx]
cidx = chain[idx+1]
attn[:,:,pidx,cidx] = (attn[:,:,pidx,cidx] + attn[:,:,ppidx,pidx]) /2.0
attn[:,:,cidx,pidx] = (attn[:,:,cidx,pidx] + attn[:,:,ppidx,pidx]) /2.0
else:
if self.comb==True:
xc_attn = (q.transpose(-2, -1) @ k_xc) * self.scale
elif self.comb==False:
xc_attn = (q @ k_xc.transpose(-2, -1)) * self.scale
attn += xc_attn
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if self.comb==True:
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
x = rearrange(x, 'B H N C -> B N (H C)')
elif self.comb==False:
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
super().__init__()
self.changedim = changedim
self.currentdim = currentdim
self.depth = depth
if self.changedim:
assert self.depth>0
self.norm1 = norm_layer(dim)
self.attn = attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.changedim and self.currentdim < self.depth//2:
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
# self.reduction = nn.Linear(dim, dim//2)
elif self.changedim and depth > self.currentdim > self.depth//2:
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
# self.improve = nn.Linear(dim, dim*2)
self.vis = vis
def forward(self, x, vis=False):
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.changedim and self.currentdim < self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.reduction(x)
x = rearrange(x, 'b c t -> b t c')
elif self.changedim and self.depth > self.currentdim > self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.improve(x)
x = rearrange(x, 'b c t -> b t c')
return x
class Block_xxc(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention_xxc, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
super().__init__()
self.changedim = changedim
self.currentdim = currentdim
self.depth = depth
if self.changedim:
assert self.depth>0
self.norm1 = norm_layer(dim)
self.attn = attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.changedim and self.currentdim < self.depth//2:
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
# self.reduction = nn.Linear(dim, dim//2)
elif self.changedim and depth > self.currentdim > self.depth//2:
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
# self.improve = nn.Linear(dim, dim*2)
self.vis = vis
def forward(self, x, xc=None, vis=False):
if xc==None:
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x), self.norm1(xc), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.changedim and self.currentdim < self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.reduction(x)
x = rearrange(x, 'b c t -> b t c')
elif self.changedim and self.depth > self.currentdim > self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.improve(x)
x = rearrange(x, 'b c t -> b t c')
return x
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
class MixSTE2(nn.Module):
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None, is_train=True):
""" ##########hybrid_backbone=None, representation_size=None,
Args:
num_frame (int, tuple): input frame number
num_joints (int, tuple): joints number
in_chans (int): number of input channels, 2D joints have 2 channels: (x,y)
embed_dim_ratio (int): embedding dimension ratio
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
embed_dim = embed_dim_ratio #### temporal embed_dim is num_joints * spatial embedding dim ratio
out_dim = 3 #### output dimension is num_joints * 3
self.is_train=is_train
### spatial patch embedding
self.Spatial_patch_to_embedding = nn.Linear(in_chans + 3 + 1 , embed_dim_ratio)
self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
self.Temporal_pos_embed = nn.Parameter(torch.zeros(1, num_frame, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(embed_dim_ratio),
nn.Linear(embed_dim_ratio, embed_dim_ratio*2),
nn.GELU(),
nn.Linear(embed_dim_ratio*2, embed_dim_ratio),
)
self.group = nn.Parameter(torch.zeros(1, 6, embed_dim))
self.lev0_list = [0]
self.lev1_list = [1,4,7]
self.lev2_list = [2,5,8]
self.lev3_list = [3,6,9,11,14]
self.lev4_list = [10,12,15]
self.lev5_list = [13,16]
boneindex = []
args = parse_args()
boneindextemp = args.boneindex_h36m.split(',')
boneindex = []
for i in range(0,len(boneindextemp),2):
boneindex.append([int(boneindextemp[i]), int(boneindextemp[i+1])])
self.boneindex = boneindex
bonechain = [[0,1,2,3],[0,4,5,6],[0,7,8,9,10],[0,7,8,11,12,13],[0,7,8,14,15,16]]
self.bonedic = {0:'1,4,7', 1:'2', 2:'3', 3:None, 4:'5', 5:'6', 6:None, 7:'8', 8:'9,11,14', 9:'10', 10:None, 11:'12', 12:'13', 13:None, 14:'15', 15:'16', 16:None}
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.block_depth = depth
self.STEblocks_0 = nn.ModuleList([
Block(
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, bonechain=bonechain)])
self.STEblocks = nn.ModuleList([
# Block: Attention Block
Block_xxc(
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, bonechain=bonechain)
for i in range(1,depth)])
self.TTEblocks_0 = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, comb=False, changedim=False, currentdim=1, depth=depth, bonechain=bonechain)])
self.TTEblocks = nn.ModuleList([
Block_xxc(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, comb=False, changedim=False, currentdim=i+1, depth=depth, bonechain=bonechain)
for i in range(1,depth)])
self.Spatial_norm = norm_layer(embed_dim_ratio)
self.Temporal_norm = norm_layer(embed_dim)
self.head_pose = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim , out_dim),
)
def STE_forward(self, x_2d, x_3d, t):
if self.is_train:
x = torch.cat((x_2d, x_3d), dim=-1)
b, f, n, c = x.shape ##### b is batch size, f is number of frames, n is number of joints, c is channel size?
x = rearrange(x, 'b f n c -> (b f) n c', )
### now x is [batch_size, receptive frames, joint_num, 2 channels]
x = self.Spatial_patch_to_embedding(x)
# Hierarchical embedding.
for lev in range(6):
lev_list = eval('self.lev{:}_list'.format(lev))
for idx in lev_list:
x[:,idx,:] += self.group[0][lev:lev+1]
x += self.Spatial_pos_embed
time_embed = self.time_mlp(t)[:, None, None, :].repeat(1,f,n,1)
time_embed = rearrange(time_embed, 'b f n c -> (b f) n c', )
x += time_embed
else:
x_2d = x_2d[:,None].repeat(1,x_3d.shape[1],1,1,1)
x = torch.cat((x_2d, x_3d), dim=-1)
b, h, f, n, c = x.shape ##### b is batch size, f is number of frames, n is number of joints, c is channel size
x = rearrange(x, 'b h f n c -> (b h f) n c', )
x = self.Spatial_patch_to_embedding(x)
# Hierarchical encoding.
for lev in range(6):
lev_list = eval('self.lev{:}_list'.format(lev))
for idx in lev_list:
x[:,idx,:] += self.group[0][lev:lev+1]
x += self.Spatial_pos_embed
time_embed = self.time_mlp(t)[:, None, None, None, :].repeat(1, h, f, n, 1)
time_embed = rearrange(time_embed, 'b h f n c -> (b h f) n c', )
x += time_embed
x = self.pos_drop(x)
blk = self.STEblocks_0[0]
x = blk(x)
# x = blk(x, vis=True)
x = self.Spatial_norm(x)
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)
return x
def TTE_foward(self, x):
assert len(x.shape) == 3, "shape is equal to 3"
b, f, _ = x.shape
x += self.Temporal_pos_embed
x = self.pos_drop(x)
blk = self.TTEblocks_0[0]
x = blk(x)
x = self.Temporal_norm(x)
return x
def ST_foward(self, x,xc):
assert len(x.shape)==4, "shape is equal to 4"
b, f, n, cw = x.shape
for i in range(0, self.block_depth-1):
x = rearrange(x, 'b f n cw -> (b f) n cw')
steblock = self.STEblocks[i]
tteblock = self.TTEblocks[i]
x = steblock(x)
x = self.Spatial_norm(x)
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)
x = tteblock(x,xc)
x = self.Temporal_norm(x)
x = rearrange(x, '(b n) f cw -> b f n cw', n=n)
return x
# 在经过STE(把STE中包含的HRST去掉)和TTE后分出xc, 后7层都用同样的Block_xxc
def forward(self, x_2d, x_3d_dir, x_3d_bone, t):
x_3d = torch.cat((x_3d_dir,x_3d_bone), dim=-1)
if self.is_train:
b, f, n, c = x_2d.shape
else:
b, h, f, n, c = x_3d.shape
x_2d, t = x_2d.float(), t.float()
x = self.STE_forward(x_2d, x_3d, t,)
x = self.TTE_foward(x)
x = rearrange(x, '(b n) f cw -> b f n cw', n=n)
xc_list = []
xc = x.clone()
for idx in range(17):
pidx = idx
if self.bonedic[idx]:
cidx = [int(x) for x in self.bonedic[idx].split(',')]
xc_cidx = xc[:,:,cidx]
xc_cidx = torch.cat((xc_cidx , xc[:,:,pidx:pidx+1]),dim=2).mean(2)
else:
xc_cidx = xc[:,:,pidx:pidx+1].squeeze(2)
xc_list.append(xc_cidx)
xc = torch.stack(xc_list,dim=2)
x = self.ST_foward(x,xc)
x_pos = self.head_pose(x)
if self.is_train:
x_pos = x_pos.view(b, f, n, -1)
else:
x_pos = x_pos.view(b, h, f, n, -1)
return x_pos