|
--- |
|
license: mit |
|
language: en |
|
tags: |
|
- bert |
|
- cloze |
|
- distractor |
|
- generation |
|
datasets: |
|
- dgen |
|
widget: |
|
- text: "The only known planet with large amounts of water is [MASK]. [SEP] earth" |
|
- text: "The products of photosynthesis are glucose and [MASK] else. [SEP] oxygen" |
|
--- |
|
|
|
# cdgp-csg-bert-dgen |
|
|
|
## Model description |
|
|
|
This model is a Candidate Set Generator in **"CDGP: Automatic Cloze Distractor Generation based on Pre-trained Language Model", Findings of EMNLP 2022**. |
|
|
|
Its input are stem and answer, and output is candidate set of distractors. It is fine-tuned by [**DGen**](https://github.com/DRSY/DGen) dataset based on [**bert-base-uncased**](https://huggingface.co/bert-base-uncased) model. |
|
|
|
For more details, you can see our **paper** or [**GitHub**](https://github.com/AndyChiangSH/CDGP). |
|
|
|
## How to use? |
|
|
|
1. Download model by hugging face transformers. |
|
```python |
|
from transformers import BertTokenizer, BertForMaskedLM, pipeline |
|
|
|
tokenizer = BertTokenizer.from_pretrained("AndyChiang/cdgp-csg-bert-dgen") |
|
csg_model = BertForMaskedLM.from_pretrained("AndyChiang/cdgp-csg-bert-dgen") |
|
``` |
|
|
|
2. Create a unmasker. |
|
```python |
|
unmasker = pipeline("fill-mask", tokenizer=tokenizer, model=csg_model, top_k=10) |
|
``` |
|
|
|
3. Use the unmasker to generate the candidate set of distractors. |
|
```python |
|
sent = "The only known planet with large amounts of water is [MASK]. [SEP] earth" |
|
cs = unmasker(sent) |
|
print(cs) |
|
``` |
|
|
|
## Dataset |
|
|
|
This model is fine-tuned by [DGen](https://github.com/DRSY/DGen) dataset, which covers multiple domains including science, vocabulary, common sense and trivia. It is compiled from a wide variety of datasets including SciQ, MCQL, AI2 Science Questions, etc. The detail of DGen dataset is shown below. |
|
|
|
| DGen dataset | Train | Valid | Test | Total | |
|
| ------------------- | ----- | ----- | ---- | ----- | |
|
| **Number of questions** | 2321 | 300 | 259 | 2880 | |
|
|
|
You can also use the [dataset](https://huggingface.co/datasets/AndyChiang/dgen) we have already cleaned. |
|
|
|
## Training |
|
|
|
We use a special way to fine-tune model, which is called **"Answer-Relating Fine-Tune"**. More details are in our paper. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- Pre-train language model: [bert-base-uncased](https://huggingface.co/bert-base-uncased) |
|
- Optimizer: adam |
|
- Learning rate: 0.0001 |
|
- Max length of input: 64 |
|
- Batch size: 64 |
|
- Epoch: 1 |
|
- Device: NVIDIA® Tesla T4 in Google Colab |
|
|
|
## Testing |
|
|
|
The evaluations of this model as a Candidate Set Generator in CDGP is as follows: |
|
|
|
| P@1 | F1@3 | MRR | NDCG@10 | |
|
| ----- | ---- | ----- | ------- | |
|
| 10.81 | 7.72 | 18.15 | 24.47 | |
|
|
|
## Other models |
|
|
|
### Candidate Set Generator |
|
|
|
| Models | CLOTH | DGen | |
|
| ----------- | ----------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- | |
|
| **BERT** | [cdgp-csg-bert-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bert-cloth) | [*cdgp-csg-bert-dgen*](https://huggingface.co/AndyChiang/cdgp-csg-bert-dgen) | |
|
| **SciBERT** | [cdgp-csg-scibert-cloth](https://huggingface.co/AndyChiang/cdgp-csg-scibert-cloth) | [cdgp-csg-scibert-dgen](https://huggingface.co/AndyChiang/cdgp-csg-scibert-dgen) | |
|
| **RoBERTa** | [cdgp-csg-roberta-cloth](https://huggingface.co/AndyChiang/cdgp-csg-roberta-cloth) | [cdgp-csg-roberta-dgen](https://huggingface.co/AndyChiang/cdgp-csg-roberta-dgen) | |
|
| **BART** | [cdgp-csg-bart-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bart-cloth) | [cdgp-csg-bart-dgen](https://huggingface.co/AndyChiang/cdgp-csg-bart-dgen) | |
|
|
|
### Distractor Selector |
|
|
|
**fastText**: [cdgp-ds-fasttext](https://huggingface.co/AndyChiang/cdgp-ds-fasttext) |
|
|
|
|
|
## Citation |
|
|
|
None |