test / src /f16-dwconv /unipass-neonfp16arith.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
void xnn_f16_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__neonfp16arith${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output_ptr,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
uint16_t* output = (uint16_t*) output_ptr;
const float16x8_t vmin = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith.min));
const float16x8_t vmax = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith.max));
do {
$for K in range(KERNEL_TILE):
const uint16_t* i${K} = (const uint16_t*) input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != (const uint16_t*) zero) {
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const void**) ((uintptr_t) input + input_stride);
size_t c = channels;
const uint16_t* w = (const uint16_t*) weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]}p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vi${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vk${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc${ABC[C:C+8]}p${K} = vmulq_f16(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = vfmaq_f16(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = vaddq_f16(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_STEP});
$ACC_STEP *= 2
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]} = vmaxq_f16(vacc${ABC[C:C+8]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = vminq_f16(vacc${ABC[C:C+8]}, vmax);
$for C in range(0, CHANNEL_TILE, 8):
vst1q_u16(output, vreinterpretq_u16_f16(vacc${ABC[C:C+8]})); output += 8;
}
$if CHANNEL_TILE > 8:
for (; c >= 8; c -= 8) {
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8;
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE - 8}));
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
vst1q_u16(output, vreinterpretq_u16_f16(vacc01234567)); output += 8;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE == 8:
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$else:
float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w));
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K}));
$if CHANNEL_TILE == 8:
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
$else:
const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE}));
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
float16x4_t vacc0123 = vget_low_f16(vacc01234567);
if (c & 4) {
vst1_u16(output, vreinterpret_u16_f16(vacc0123)); output += 4;
vacc0123 = vget_high_f16(vacc01234567);
}
if (c & 2) {
vst1_lane_u32((void*) output, vreinterpret_u32_f16(vacc0123), 0); output += 2;
vacc0123 = vext_f16(vacc0123, vacc0123, 2);
}
if (c & 1) {
vst1_lane_u16(output, vreinterpret_u16_f16(vacc0123), 0); output += 1;
}
}
output = (uint16_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}