test / src /f32-dwconv /multipass-wasmsimd.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
No virus
22.6 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$CHANNEL_SUBTILE = 4
$assert CHANNEL_TILE % CHANNEL_SUBTILE == 0
$CHANNEL_ROUND = 4
$assert MIDDLE_PASS_TILE <= LAST_PASS_TILE
$assert FIRST_PASS_TILE >= 1
$assert MIDDLE_PASS_TILE >= 1
$assert LAST_PASS_TILE >= 1
$assert ACCUMULATORS >= 1
$assert ACTIVATION != "MINMAX" or ARCH in ["ARM", "X86", "RELAXED"]
$assert not FMA or ARCH == "RELAXED"
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <wasm_simd128.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
$assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"]
$if ACTIVATION == "MINMAX":
$ WASM_F32X4_MIN={"ARM": "wasm_f32x4_min", "X86": "wasm_f32x4_pmin", "RELAXED": "wasm_f32x4_relaxed_min"}[ARCH]
$ WASM_F32X4_MAX={"ARM": "wasm_f32x4_max", "X86": "wasm_f32x4_pmax", "RELAXED": "wasm_f32x4_relaxed_max"}[ARCH]
$ACTIVATION_SUFFIX = {"LINEAR": ""}.get(ACTIVATION, "_" + ACTIVATION.lower())
$ISA = "wasmsimd" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH != "RELAXED") else "wasmrelaxedsimd"
$ARCH_SUFFIX = "" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH == "RELAXED") else "_" + ("fma" if FMA else ARCH.lower())
$PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION]
void xnn_f32_dwconv${ACTIVATION_SUFFIX}_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__${ISA}${ARCH_SUFFIX}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const float** input,
const float* weights,
float* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const float* zero,
size_t kernel_size,
float* buffer,
const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
assert(kernel_size > ${FIRST_PASS_TILE});
$if ACTIVATION == "MINMAX":
const v128_t vmin = wasm_v128_load64_splat(params->wasmsimd.min);
const v128_t vmax = wasm_v128_load64_splat(params->wasmsimd.max);
$elif ACTIVATION == "RELU":
const v128_t vzero = wasm_i32x4_const_splat(0);
do {
const float* w = weights;
// First pass to process ${FIRST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(FIRST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${FIRST_PASS_TILE};
// Process c channels and write to buffer.
$if CHANNEL_TILE == 4:
size_t c = 0;
for (; c < channels; c += 4) {
v128_t vacc0p0 = wasm_v128_load(w);
$for K in range(FIRST_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += ${CHANNEL_TILE};
const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += ${CHANNEL_TILE};
}
$else:
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w);
$else:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w + ${C});
$for K in range(FIRST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K});
$else:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 4):
const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 4):
$if 1 <= K < ACCUMULATORS:
v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
$elif FMA:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:4]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
wasm_v128_store(b, vacc${ABC[C:C+4]}p0);
$else:
wasm_v128_store(b + ${C}, vacc${ABC[C:C+4]}p0);
b += ${CHANNEL_TILE};
}
$if CHANNEL_TILE == 8:
if (c != 0) {
v128_t vacc0p0 = wasm_v128_load(w);
$for K in range(FIRST_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += 4;
const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * 4};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += 4;
}
$else:
for (; c != 0; c -= 4) {
v128_t vacc0p0 = wasm_v128_load(w);
$for K in range(FIRST_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += 4;
const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * 4};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += 4;
}
}
// Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration.
for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) {
float* b = buffer;
$for K in range(MIDDLE_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${MIDDLE_PASS_TILE};
$if CHANNEL_TILE == 4:
size_t c = 0;
for (; c < channels; c += 4) {
v128_t vacc0p0 = wasm_v128_load(b);
$for K in range(MIDDLE_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += ${CHANNEL_TILE};
$if K == 0:
const v128_t vk${K}x0123 = wasm_v128_load(w);
$else:
const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += ${CHANNEL_TILE};
}
$else:
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b);
$else:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b + ${C});
$for K in range(MIDDLE_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K});
$else:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 4):
$if K == 0 and C == 0:
const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w);
$else:
const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 4):
$if 1 <= K < ACCUMULATORS:
v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
$elif FMA:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:4]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
wasm_v128_store(b, vacc${ABC[C:C+4]}p0);
$else:
wasm_v128_store(b + ${C}, vacc${ABC[C:C+4]}p0);
b += ${CHANNEL_TILE};
}
$if CHANNEL_TILE == 8:
if (c != 0) {
v128_t vacc0p0 = wasm_v128_load(b);
$for K in range(MIDDLE_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += 4;
$if K == 0:
const v128_t vk${K}x0123 = wasm_v128_load(w);
$else:
const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * 4};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += 4;
}
$else:
for (; c != 0; c -= 4) {
v128_t vacc0p0 = wasm_v128_load(b);
$for K in range(MIDDLE_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += 4;
$if K == 0:
const v128_t vk${K}x0123 = wasm_v128_load(w);
$else:
const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * 4};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
wasm_v128_store(b, vacc0p0);
b += 4;
}
}
// Last pass to process up to ${LAST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(0, LAST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
size_t c = channels;
$if CHANNEL_TILE > 4:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b);
$else:
v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b + ${C});
b += ${CHANNEL_TILE};
$for K in range(LAST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K});
$else:
const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 4):
$if K == 0 and C == 0:
v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w);
$else:
v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 4):
$if 1 <= K < ACCUMULATORS:
v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]});
$elif FMA:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS});
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:4]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$if ACTIVATION == "MINMAX":
$for C in range(0, CHANNEL_TILE, 4):
v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vacc${ABC[C:C+4]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = ${WASM_F32X4_MIN}(vacc${ABC[C:C+4]}, vmax);
$elif ACTIVATION == "RELU":
$for C in range(0, CHANNEL_TILE, 4):
const v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vacc${ABC[C:C+4]}p0, vzero);
$elif ACTIVATION == "LINEAR":
$for C in range(0, CHANNEL_TILE, 4):
const v128_t vacc${ABC[C:C+4]} = vacc${ABC[C:C+4]}p0;
$for C in range(0, CHANNEL_TILE, 4):
$if C == 0:
wasm_v128_store(output, vacc${ABC[C:C+4]});
$else:
wasm_v128_store(output + ${C}, vacc${ABC[C:C+4]});
output += ${CHANNEL_TILE};
}
for (; c >= 4; c -= 4) {
v128_t vacc0p0 = wasm_v128_load(b);
b += 4;
$for K in range(LAST_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
i${K} += 4;
$if K == 0:
v128_t vk${K}x0123 = wasm_v128_load(w);
$else:
v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
$if CHANNEL_TILE > 4:
w += ${LAST_PASS_TILE * 4};
$else:
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
$if ACTIVATION == "MINMAX":
v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vmin);
vacc0 = ${WASM_F32X4_MIN}(vacc0, vmax);
$elif ACTIVATION == "RELU":
const v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vzero);
$elif ACTIVATION == "LINEAR":
const v128_t vacc0 = vacc0p0;
wasm_v128_store(output, vacc0);
output += 4;
}
if XNN_UNLIKELY(c != 0) {
v128_t vacc0p0 = wasm_v128_load(b);
$for K in range(LAST_PASS_TILE):
const v128_t vi${K}x0123 = wasm_v128_load(i${K});
$if K == 0:
v128_t vk${K}x0123 = wasm_v128_load(w);
$else:
v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4});
$if 1 <= K < ACCUMULATORS:
v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123);
$elif FMA:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS});
$else:
vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:4]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE});
$ACC_SLICE *= 2
$if ACTIVATION == "MINMAX":
v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vmin);
vacc0 = ${WASM_F32X4_MIN}(vacc0, vmax);
$elif ACTIVATION == "RELU":
v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vzero);
$elif ACTIVATION == "LINEAR":
v128_t vacc0 = vacc0p0;
if (c & 2) {
wasm_v128_store64_lane(output, vacc0, 0);
vacc0 = wasm_v64x2_shuffle(vacc0, vacc0, 1, 1);
output += 2;
}
if (c & 1) {
wasm_v128_store32_lane(output, vacc0, 0);
output += 1;
}
}
}
input = (const float**) ((uintptr_t) input + input_stride);
output = (float*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}